
Assembler

Copyright 1983 by SofTech Microsystems, Inc.

All rights reserved. No part of this work may
be reproduced in any form or by any means or
used to make a derivative work (such as a
translation, transformation, or adaptation)
wi thout the written permission of SofTech
Microsystems, Inc.

p-System is a trademark of SofTech Microsystems,
Inc.

UCSD and UCSD Pascal are registered trademarks
of the Regents of the University of california.
Use thereof in conjunction with any goods or
services is authorized by specific license only,
and any unauthorized use is contrary to the laws
of the State of California.

Printed in the United States of America.

Disclaimer

This document and the software it describes are
sUbject to change without notice. No warranty
expressed or implied covers their use. Neither
the manufacturer nor the seller is resIJOnsible
or liable for any consequences of their use.

PREFACE

Preface

This manual describes the p-System Assembler.
The assemblers which accompany this manual
enable you to produce assembly language code for
anyone of the following processors:

LSI-ll/PDP-ll
280
6502
6800
8080
9900
6809
28
68000
8086/8087/8088

The assemhly language prograrrming details for
these processors isn't covered in this manual.
You should use a manual which describes the
processor you are programming for along with
this manual. (See Chapter 2.)

You can use the p-System to develop assembly
language programs to provide:

1. Assembly language procedures to run under
control of a host program; or

2. Stand-alone assembly language programs to use
outside of the operating system's
environment.

v

Preface

The assemblers, in conjunction with the system
linker and some support programs, give you these
capabilities.

You should use this reference manual in
conjunction with the processor software manual
that supports your machine. For information
concerning differences from the processor's
standard software syntax, refer to Chapter 2.

This manual is organized as follows. Chapter 1,
"The Assembler," presents detailed information
which applies to the assembler in general.
Chapter 2, "Processor-Specific Information, "
provides infonnation that is specific to each
processor with a section for each assembler.

Appendix A describes the linker which combines
separately assembled code files and can also
link a high-level host program with assembled
routines.

Appendix B covers the Compress utility. This
utility allows you to produce a relocatable or
absolute assembled object code file, enabling it
to be run outside of the p-System environment.

Appendix C contains some typical 80R6 routines.
These examples demonstrate how to interface with
Pascal program from assembly language.

vi

Preface

Appendices D through M lists the assembler
syntax errors for each processor.

Appendix N shows the value of NIL used hy each
processor.

vii

TAB L E

o F

CONTENTS

THE ASSEMBLER. . • . • 1-3

INTRODUCTION. • • • • • • • • 1-3

Assembly Language Definition. . • 1-3

Assembly Language Applications. . . 1-4

GENERAL INFORMATION. • • • • • • 1-5

Object Code Format. 1-5

Byte Organization. 1-5

Word Organization.• 1-5

Source Code Format. . • • 1-6

Character Set. • • • . • . • . . . • . • 1-6

Identifiers. • . . • . • • .. 1-6

Predefined Symbols and Identifiers. 1-7

Character Strings. • • . • • • 1-8

Table of Contents

Constants. • 1-8

Binary Integer Constants. 1-8

Decimal Integer C'..onstants. • 1-9

Hexadecimal Integer Constants. . . . 1-9

Octal Integer Constants. . 1-10

Default Integer Constants. .1-10

Character Constants. . • . • 1-10

Assembly Time Constants. 1-11

Expressions•.•........ 1-11

Relocatable and Absolute. 1-12

Linking and Restrictions. 1-12

Arithmetic & Logical Operators .•. 1-13

Subexpression Grouping 1-15

Examples. 1-16

Source Statement Format. • •• 1-17

Label Field. 1-17

Standard Label Usage. 1-17

Local Labe1 Usage. 1-18

Opcode Field. • . • 1-20

Operand Field. • . • . . 1-20

Comment Field. • . • . • . • 1-20

Source File Format. • . 1-21

Assembly Routines. 1-21

Global Declarations. . 1-22

Absolute Sections. • .. 1-22

1-25

· 1-28
1-33

1-38

· 1-39
· 1-47

1-52

1-53

• 1-55

Table of Contents

ASSEMBLER DIRECTIVES•..

Procedure-Delimiting Directives •••

Data and Constant Definitions ••

Location Counter Modification ••

Listing Control Directives •..•
Program Linkage Directives ••••

Conditional Assembly Directives.
Macro Definition Directives ...•..

Miscellaneous Directives ..

CONDITIONAL ASSEMBLY. • • •
Conditional Expressions.

1-59

1-60

MACRO LANGUAGE. • . • . . . 1-61

Macro Definitions. • • . . • • . 1-62
Macro Calls. • • • . . • • . • • • • •• 1-63

Parameter Passing. • . • • . . • • • • . 1-63

Scope of labels in Macros. . . • . .• 1-65

Local Labels as Macro Parameters.. 1-66

PRCXJRAM LINKING & RELOCATION. • • • . • 1-68
Program Linking Directives •.•.•.. 1-71

Host Communication Directives. . 1-72

F.xternal Reference Directives. • 1-73

Program Identifier Directives. • 1-74
Linking Program Modules. • • • • • .• 1-75

Linking with a Pascal Program. . . . 1-75

Parameter Passing Conventions ••• 1-78

Variable Parameters. • • • • . • . . 1-79

Table of Contents

Value Parameters. • •. 1-80

String and Byte Array Parameters. • 1-81
Example of Linking to Pascal. • .. 1-83

Stand-Alone Applications. • • • • . • 1-84
Assembling. • . • • • • • • . . . 1-85

Executing Absolute Code Files. 1-86

OPERATION OF THE ASSEMBLER. • 1-89
Support Files. • • • . . • • 1-89

Setting Up Input And Output Files.. 1-90
Responses to Listing Prompt. . • 1-91
Output Modes. • • • • • • • • • • . . • • 1-93

Responses to Error Prompt. . 1-94

Miscellany. • • 1-95

ASSEMBLER OUTPUT. . 1-97

Source Listing. • • • . . . 1-98

Error Messages.•. 1-99

Code Listing. . . • . . 1-99

Forward References. • • • • 1-100
External References. 1-101
Multiple ('--ode Lines. • • • • 1-101

Symbol Table. . . • • • . • • . • . 1-102

Example Assembled Listing. . • • • • 1-103

Table of Contents

PROCESSOR-SPECIFIC INFORMATION.

INTRODUCTION.

2-3

2-3

LSI-ll/PDP-ll ASSEMBLER •••••••••• 2-4

Syntax Conventions. . • • • . 2-4

Sharing ~E Resources. • 2-4

Memory Organization. . • . . . • . . .• 2-4

Default Constant and List F~dices•.. 2-4

Z80 ASSEMBLER. • • • • • • • • • • • • 2-5

Syntax Conventions. 2-5

Sharing :tME Resources. • • . . • . . • • 2-5

Memory Organization. . • . . . • • . •. 2-5

Default Constant and List Radices. 2-6

6502 ASSEMBLER. • • • •

Syntax ~~nventions.

Sharing Th1:E Resources. • • . . • .

Memory Organization. • . .

Default ('~nstant and List Radices. • .

2-7

2-7

2-8

2-8

2-8

6800 ASSEMBLER. • • •

Syntax ('~nventions..

Sharing Th1:E Resources. • . . • . • . •

Memory Organization •...•..•..

Default Constant and List Radices .•

2-9

. 2-9

. 2-10

• 2-10

2-10

Table of Contents

8080 ASSEMBLER. • . • • 2-11

Syntax Conventions. • • • • • • • • •• 2-11

Sharing IME Resources. • • • • • • . • • 2-11

Memory Organization. • • • • • • • • • • 2-11

Default C~nstant and List Radices.. 2-11

9900 ASSEMBLER. • • • . • • 2-12

Syntax Conventions. • • • • •• 2-12

Sharing IME Resources. • • • • • • • • . 2-12

Memory Organization ••••••••••• ?-12

Default Constant and List Radices.. 2-13

6809 ASSEMBLER. • • • ••• • • 2-14

Syntax Conventions. • • • •• 2-14

Sharing IME Resources •••••••••• 2-15

Memory Organization. • • • • • • • • • • 2-15

Default Constant and List Radices.. 2-15

28 ASSEMBLER. • • • • • • • • • • • • • • . 2-16

Syntax Conventions. • • • • • • • • •• 2-16

Symbols. • • • • • • • • • • • • • • 2-16

Numeric C~nstants. • • • 2-16

Predefined C,onstants • • • •• 2-16

Sharing Th1E Resources. • • • • • • 2-17

Memory Organization. • • • • • • 2-17

Default and List Radices. • • • • • . • 2-17

Table of Contents

8086/R088/8087 ASSEMBLER. • • • • . .• ~-18

Syntax Conventions. • • • • • • • • .• 2-18

Sharing H.fE Resources. • • • • • • • • • 2-24

calling and Returning ••.•.•••• 2-?4

Accessing Parameters. • • • • • • .• 2-25

Register Usage. • • • • • • . • • • • • 2-26

Memory Organization ••••••••.•. 2-27

Default Constant and List Radices.. 2-28

68000 ASSEMBLER. • • • • • • • • • • • • . 2-29

Syntax Conventions. • • . • • • • . •• 2-29

Sharing H.fE Resources •••••••••. 2-31

Memory Organization. • • • • • • • • • . 2-33

Default C~nstant and List Radices.. 2-33

APPENDICES. • • • • • • • • • • • • • • • • • • A-I

A: THE LINKER. • • • • • • • • • A-3

B: THE CCMPRESS UTILITY. • A-7

C: CODING EXAMPLES. • • • • A-13

D: 6502 SYNTAX ERRORS. • • • • • • • •• A-39

E: 6800 SYNTAX ERRORS. A-42

F: 6809 SYNTAX ERRORS. • • A-45

F: 8080 SYNTAX ERRORS. • A-48

H: 9900 SYNTAX ERRORS. A-51

I: LSI-ll/PDP-ll SYNTAX ERRORS. • • • • A-54

J: Z8 SYNTAX ERRORS. • • • • • • • • •• A-57

K: Z80 SYNTAX ERRORS. • • • • • A-60

L: 8086/88/87 SYNTAX ERRORS ••••••• A-63

Table of Contents

M: 68000 SYNTAX ERRORS. • • • • • • • • • A-68

N: NIL mINTER VALUES. • • • • • • • • • A-71

INDEX •••••••••••••••••••••• I-I

CHAPTER 1

THE ASS E M B L E R

The Assembler

INTRODUCTION

This chapter describes the p-System Assembler.
It covers assembler-related concepts, assembler
directives, and assembler operations. Other
topics covered here include:

• Linking assembled routines with host
compilation units.

• Assembled listings.

• Error messages.

• Sharing HAE Resources.

Assembly Language Definition

An assembly language consists of symbolic
names that can represent machine instructions,
memory addresses, or program data. The main
advantage of assembly language programming
over machine coding is that programs can be
organized in a more readable fashion, making
them easier to understand.

1-3

The Assembler

An assembler translates an assembly language
program, called source code, into a sequence
of machine instructions, called object code.
Assemblers can create either relocatable or
absolute object code. Relocatable code
includes information that allows a loader to
place it in any available area of memory,
while absolute code must be loaded into a
specific area of memory. Symbolic addresses
in programs that are assembled to relocatahle
ohject code are called relocatable addresses.

Assembly Language Applications

Using the p-System, you can develop:

1. Assembly language procedures to be used
under a host program; or

2. Stand-alone assembly language programs for
use in a different operating system
environment.

1-4

The Assembler

GENERAl.. INFORMATION

Object Code Format

Byte Organization

A byte consists of eight bits. These bits
may represent eight binary values or a
single character of data. The bits may also
represent a one-byte machine instruction or
a number that is interpreted as either a
signed two's complement number in the range
of -128 to 127 or an unsigned number in the
range of a to 255.

Word Organization

A word consists of 16 bits or 2 adjacent
bytes in memory. A word may contain a
one-word machine instruction, any
combination of byte quantities, or a number
that may be interpreted as either a signed
two's complement number in the range of
-32,768 to 32,767 or an unsigned number in
the range of a to 65,535.

1-5

The Assembler

Source Code Format

Character Set

Use the following characters to construct
source code:

• Uppercase
characters:

and lowercase alphabetic
A through Z, a through z

• Numerals: o through 9

• Special symbols:
r) /

.. II- ".
@ # $ % A & * () < >

I + -= ?

• Space (' ') character and tab character

Identifiers

Identifiers consist of an alphabetic
character followed by a series of
alphanumeric characters and/or underscore
characters. The underscore character isn't
significant. Only the first R characters of
an identifier are significant.

1-6

The Assemhler

Use identifiers in:

• label and constant definitions.

• Machine instructions, assembler
directives, and macro identifiers.

• label and constant references .

F(,..;mArr~y

·FORM· ARRAY
.~ .. ' formar.raY . -- . _.

- ••• all denote the -.same ; tem.; . -.. _ .

. _.....

.". :

Predefined Symbols and Identifiers

Predefined identifiers are reserved by the
assembler as symbolic names for rmchine
instructions and registers. [):)n't use
them as names for labels, constants, or
procedures. Also, the dollar sign, "$,"
is predefined to specify the location
counter. When used in an expression, the
dollar sign represents the current value
of the location counter in the program.

1-7

The Assembler

Character Strings

Write a character string as a series of
ASCII characters delimited by double quotes.
A string may contain up to 80 characters,
but can't cross source lines. You can embed
a double quote in a character string by
entering it twice; for example, "This
contains ""embedded"" double quotes." The
assembler directive .ASCII requires a
character string for its operand.

Strings also have limited uses in
expressions.

Constants

Binary Integer Constants

Write a binary integer constant as a
series of bits or binary digits (0 through
1) followed by the letter 'T'. The range
of values is 0 to 1111111111111111, or 0
to 11111111, if a byte constant.

OT .
01Q00100r

··c11101T

1-8

The Assemhler

Decimal Integer Constants

Write a decimal integer word constant as a
series of numerals (0 through 9) followed
by a period. Its range of values is
-32768 to 32767 as a signed two's
complement number. As a byte constant,
its range of values is -12R to 127 as a
signed two's complement number or 0 to 255
as an unsigned number.

001.
256.
-4096.

Hexadecimal Integer C~nstants

Write a hexadecimal integer word constant
as a series of up to four significant
hexadecimal numerals (0 through 9, A
through F) followed by the letter 'H'.
The leading numeral of a hexadecimal
constant must he a numeric character. The
range of values is 0 to FFFF. These are
examples of valid hexadecimal constants:

OAH
100H
OFFFEH ; Lead; n9" zero ; s requ; red" here

Byte constants possess similar syntax, but
can have at most two significant
hexadecimal numerals, with a range of 0 to
FF.

1-9

The Assembler

Octal Integer Constants

Write an octal integer word constant as a
series of up to six significant octal
nwnerals (0 through 7) followed by the
letter 'Q'. Its range of values is 0 to
177777. Byte constants can have at most
three significant octal numerals, with a
range of 0 to 377.

HQ­

457Q,
177776~

Default Integer Constants

If you don't follow an integer constant
with 'T', '.', 'H', or 'Q', the integer
wi 11, by default, be of a certain type.
This type is processor dependent. (See
Chapter 2.)

Character Constants

Character constants are special cases of
character strings; you may use them in
expressions. The maximum length is two
characters for a word constant and one
character for a byte constant. Character
constants are delimited by double quotes .

.. " - . -:

"A~

IIBC"
".'YA"

1-10

The Assembler

Assembly Time Constants

Write an assemhly time constant as an
identifier that the .EQU directive has
assigned a constant value. (Refer to the
sect ion on "Data and Cons tan t
Definitions, " presented later in this
chapter.) Its value is completely
determined at assembly time from the
expression following the directive. You
WIst define assembly time constants before
you refer to them.

Expressions

Use expressions as symbolic operands for
machine instructions and assemhler
directives. An expression can be:

• A label, which might refer to a defined
address or an address further down in the
source code (implying that the label is
presently undefined), an externally
referenced address, or an absolute
address.

• A constant.

• A series of labels or constants separated
by arithmetic or logical operators.

• The null expression, which evaluates to a
constant of value O.

1-11

The Assemhler

Relocatable and Absolute

An expression containing more than one
label is valid, only if the number of
relocatable labels added to the expression
exceeds the number of relocatable labels
subtracted from the expression by zero or
one. The expression result is absolute if
the difference is zero, and relocatable if
the difference is one. Don't use
subexpressions that evaluate to
relocatable quanti ties as arguments to a
multiplication, division, or logical
operation. Also, don't apply unary
operators to relocatable quantities.

In relocatable programs, don't use
absolute expressions as operands of
instructions that require
location-counter-relative address modes.

Linking and Restrictions

An expression may contain no more than one
externally defined label, and its value
must be added to the expression. An
expression containing an external
reference may not contain a
forward-referenced label, and the
relocation sum of any other relocatable
labels in the expression must be equal to
zero.

1-12

The Assembler

An expression may contain no more than one
forward-referenced identifier. A
forward-referenced identifier is assumed
to be a relocatable label defined further
down in the source code; you must define
any other identifiers before using them in
an expression. Also, don't place an
externally defined label in an expression
containing a forward-referenced label.

Arithmetic &Logical Operators

You may use the following operators in
expressions:

II Unary operations:

'+'plus

'-'minus (two's complement negation)

'-'logical not (one's complement negatiol

1-13

The Assembler

• Binary operations:

'+'plus

'-'minus

l~'exclusive or

'*'multiplication

'j'signed integer division (DIV)

'jj'unsigned integer division (DIV)

'%'unsigned remainder division (MOD)

, I 'bitwise OR

'&'bitwise AND

• Use the following operators only with
conditional assembly directives:

'='equal

,<> 'not equal

• Use the following symbols as
alternatives to the single-character
definitions presented above.
Occurrences of these alternative
definitions require at least single
blank characters as delimiters:

.OR = ' I'
•AND '&,'

.Nor ,- ,

.XOR ' ~ I

.MOD '%'

1-14

The Assembler

The assembler evaluates expressions from
left-to-right; there is no operator
precedence. All operations are performed
on word quantities. Limit unary operators
to constants and absolute addresses; and
enclose subexpressions that contain
embedded unary operators with angle
brackets.

Subexpression Grouping

You may use angle brackets (' <' and '> ')
in expressions to override the
left-to-right evaluation of operands.
Subexpressions enclosed in angle brackets
are completely evaluated before including
them in the rest of the expression. Angle
brackets are used instead of parentheses
to group expressions. Using parentheses
to group expressions doesn't generate an
error but causes the assembler to
interpret the expression as indirect
addressing rrode.

1-15

The Assembler

Examples

In the following examples of valid
expressions, the default radix is dpcirnal:

MARK +4 The s~m of the value of
identifier M)lRK plus 4

.BILL-2 The resut t of sub.t·rac~i ng 2 from
the value of identifier BILL.

2-BARRY.· The result of subtracting the
value pf identifier BARRY from 2.
BARRY must be. absolute.

3*2+MACRO .; Th·e sum of the vat4e of
ide·ntifier·MACRO ptus the.
product of 3 times 2.

Dl\VID+3*2· 2 times the sum of the· .
. ,. identifier DAVID and 3.

Dav"fd must be abso lu·te.
·650/2-RICH· The result of. Mviding 650 by

and subtracting the va(ue of
.identifier·RICH from the
quoHent. RICIf must be absolute
NuLL expression: constant 0

-4*12+<6/2> evaluates to -45 (decimal>·
85+2+·<-5> eva l.uates to 82. (iJ.e~ ima l).

011&<-0> ., evaluates to 1
o .OR 1 .AND <.NOT 0> is the same expression

; (res.ilt is 1)..

1-16

The Assembler

Source Statement Format

An assembly language source program consists
of source statements that may contain machine
instructions, assembler directives, comments,
or nothing (a blank line). Each source
statement is defined as one line of a text
file.

Label Field

The assembler supports the use of both
standard labels and local (that is,
reusable) labels. Begin the label field in
the left-most character position of each
source line. Macro identifiers and machine
instructions must not appear in the start of
the label field, but assembler directives
and comments may appear there.

Standard Label Usage

A standard label is an identifier placed
in the label field of a source statement.
You may terminate it with an optional
colon character, which isn't used when
referencing the label. Q1ly the first
eight characters of the label are
significant; the assembler ignores the
rest. The underscore character isn't
significant.

Bros , . . ,
L3456: ' - ; referenced as.' '~L3456'
The Ki nd'
LONG_label ; last character i s ignor.~

~--~- ------'

1-17

The Assembler

A standard label is a symbolic name for a
unique address or constant; declare it
only once in a source program. A label is
optional for machine instructions and for
many of the assembler directives. A
source statement consisting of only a
label is a valid statement; it effectively
assigns the current value of the location
counter to the label. This is equivalent
to placing the lahel in the lahel field of
the next source statement that generates
object code. Labels defined in the label
field of the .EQU directive are assigned
the value of the expression in the operand
field. (See the "Data and Constant
Definitions" section, presented later in
this chapter.)

Local Label Usage

Local labels allow source statements to be
labeled for other instructions to
reference, without taking up storage space
in the symbol table. They can contribute
to the cleanliness of source program
design by allowing nonmnemonic labels to
be created for iterative and decision
constructs to use, thus reserving the use
of mnemonic label names for demarking
conceptually more important sections of
code.

1-18

The Assembler

In local labels, you must place "$" in the
first character position; the remaining
characters must be digits. As in regular
labels, only the first eight digits are
significant. The scope of a local label
is limited to the lines of source
statements hetween the declaration of
consecutive standard labels: thus, the
jump to lahel $4 in the following example
is illegal:

LABEL1
. ADC·. . AX,' si

_S3~ - - "oil _"E", - AX·
JC . S3 . _.; legal.
NOP
JNC : - -$4'

LABELl
AD(' - AX; SI

S4 -. - "Oil. _"~"; AX
..

You may define up to 21 local labels
between 2 occurrences of a standard label.
On encountering a standard label, the
assembler purges all existing local label
definitions; hence, all local label names
may be redefined after that point. Don't
use local labels in the label field of the
.EQU directive. (See the "Data and
Constant Definition" section in this
chapter.)

1-19

The Assembler

Opcode Field

Begin the opcode field with the first
nonblank character following the label
field; or with the first nonblank character
following the left-most character position
when the label is ami tted. Terminate it
with one or more blanks. The opcode field
can contain identifiers of the following
types:

• Machine instruction.

• Assembler directive.

• Macro call.

Operand Field

Begin the operand field with the first
nonblank character following the opcode
field; terminate it with zero or more
blanks. It can contain zero or more
expressions, depending on the requirements
of the preceding opcode.

Comment Field

You can precede the comment field with zero
or more blanks, begin it with a semicolon
('; t), and extend it to the end of the
current source line. The comment field may
contain any printable ASCII characters. It
is listed on assembled listings and has no
other effect on the assembly process.

1-20

The Assembler

Source File Format

You should use the system editor to produce
assembly source files and save them as text
files. You can construct a source file from
the following entities:

II Assembly routines
functions) .

II Global declarations.

Assembly Routines

(procedures and

A source file rray contain more than one
assembly routine. In this case, a routine
ends when a routine delimiting directive
occurs (for example, the start of the
following routine). Each routine in a
source file is a separate entity. It
contains its own relocation information;
and, during linking, a host program may
refer to it individually.

Begin assembly routines with a . PROC , .FONC,
. RELPROC , or . RELFONC direct i ve . Terminate
the last routine in the source file with the
.END directive.

At the end of each routine, the assembler's
symbol table is cleared of all hut
predefined and globally declared symbols,
and the location counter (LC) is reset to
zero.

1-21

any non-code­
generating
operations

code-generating
or non-code generating

operations and directives

Figure 1-1. Structure of
an Assembled Module

The Assembler

Global Declarations

An assembly routine may not directly access
objects declared in another assembly
routine, even if the routines are assembled
in the same source file; however, sometimes
it's desirable for a set of routines to
share a commmon group of declarations.
Therefore, the assembler allows global data
declarations.

All subsequent assembly routines may
reference any objects declared before a
. PROC , . FUNe , . RELPROC , or . RELFUNC
directive initially occurs in a source file.
No code may be generated before the first
procedure delimiting directive; hence l the
"global" objects are limited to the
noncode-generating directives (.EQU, .REF,
.DEF, . MACRO , .LIST, etc.).

Absolute Sections

You'll often have to access absolute
addresses in memory, regardless of where an
assembly routine is loaded in memory. For
instance, a program may need to aCC8SS ROM
routines. Absolute sections allow you to
define labels and data space using the
standard syntax and directives; this give
you the added capability of specifying
absolute (nonrelocatable) label addresses,
starting at any location in memory.

1-22

The Assembler

You should initiate absolute sections with
the directive .ASECT (for absolute section)
and terminate them with the directive .PSECT
(for program section, which is the default
setting during assembly). When the .ASECT
directive is encountered, the absolute
section location counter (ALC) becomes the
current location counter. Use the .ORG
directive to set the ALe to any desired
value. Label definitions are nonrelocatable
and are assigned the current value of the
ALC. The data directives .WORD , . BLOCK , and
.BYTE cause the AlC-instead of the regular
LC-to be incremented.

Data directives in an absolute section can't
place initial values in the locations
specified as they can when used in the
program section. Thus, the absolute section
serves as a tool for constructing a template
of label-memory address assignments.

You may use the equate directive (.EQU) in
an absolute section, but restrict the labels
to being equated only to absolute
expressions. The only other directives
allowed to occur within an absolute section
are . LIST, . NOLIST, . END, and the
conditional assembly directives.

Absolute sections may appear as global
objects.

1-23

The Assembler

The following is a simple example of an
absolute section:

DSKOUT
DSKSTAT
CONS
BLAGUE
RE.Il6UT
OffSET

.ASECT
• ORG ODFOOH

.BYTE
•BYTE
.WORD
•BLOCK 4
.WORD
.EQU REI'IOUT+2
.PSECT

start abs~lute section
set ALC to DFOO hex .
note - no data' values· assigned
label assignments below

. DSKOUT = DFOO
DSKSTAT = DF01 .
CONS = ~F02

BLAGUE=DF04 (4 bytes) .
REIlOUT = DI'08
OFFSET = DFOA

1-24

The Assembler

ASSEMBLER DIRECTIVES

Assembler directives (sometimes referred to as
pseudo-ops) enable you to supply data to be
included in the program and control the assembly
process. Place assembler directives in the
source code as predefined identifiers preceded
by a period (.).

The following metasymbols are used in the syntax
definitions for assembler directives:

• Special characters and i terns in capital
letters must be entered as shown.

• Items within angle brackets «» are defined
by you.

• Items wi thin square brackets ([]) are
optional.

• The word 'or' indicates a choice between two
items.

1-25

The Assembler

II Items in lowercase letters are generic names
for classes of items.

The following terms are names for classes of
items:

b The occurrence of one or rrore
blanks.

corrment Any legal comment.
the "('.-orrrnent Field"
presented earlier
chapter.)

(Refer to
paragraph
in this

expression

integer

label

Any legal expression. (Refer
to a prior paragraph entitled
"Expressions.")

Any legal integer constant as
defined eariler in the section
called "Constants."

Any legal label. (Refer to the
"Label Field" paragraph earlier
in this chapter.)

value Any label,
expression.
is O.

constant, or
Its default value

value list

identifier

A list of zero or more values
delimited by corrmas.

A legal identifier as defined
in a preceding paragraph
entitled "Identifiers.")

1-26

idlist A list of
identifiers
COl11'lRs.

The Assembler

one or more
delimited by

id:integer list A list of one or more
identifier-integer pairs
separa ted by a colon and
delimited by a comma. The
colon:integer part is optional;
its default value is 1.

character string Any legal character string.
(See the paragraph "Character
Strings," above.)

file identifier Any legal name for a Pascal
text file.

Example:

[~label>]. [b].ASCI~ b <charac.ter string> [<comme"'~>] .

This indicates that you llRy optionally include
the label field, and that you must include a
character string as an operand.

Small examples are included after each
definition to supply you with a reference to the
specific syntax of the directive.

1-27

The Assembler

Procedure-Delimiting Directives

Include at least one set of
procedure-delimiting directives in every
source program (including those intended for
use as stand-alone code files). The assembler
is used most frequently for assembling small
routines intended to be linked with a host
compilation unit. Use the directives .PROC
and .FUNC to identify and delimit assembly
language procedures; and .RELPROC and .RELFUNC
to identify and delimit dynamically
relocatable procedures. Dynamically
relocatable procedures may reside in the code
pool; they are subject to more of the system's
memory management strategies. (For more
detailed information about using these
directives , refer to the section, "Program
Linking and Relocation," presented later on in
this chapter.)

1-28

.PROC

Form:

The Assembler

Identifies the beginning of an
assembly language procedure.
The procedure is terminated
when another delimiting
directive occurs in the source
file.

tbJ -.PROC -b <identi-fief'> [i<i-ntege;>J- [<comment>J -- '.. .:. ..,'

<identifier> is the name
associated with the assembly
procedure.

Example:

<integer> indicates
of parameter words
this routine. The
o.

.PROt - OLORIlIE;~

1-29

the number
passed to
default is

The Assembler

.FONe

Fonn:

Example:

Identifies the beginning of an
assembly language function.
The host compilation uni t
expects a function to return a
result on the top of the stack;
otherwise, .FONe is equivalent
to the .PROC directive.

(bJ .FUNC b <;dent;f;er>(,<;nteger>J «comment>J ..
- ..

<identifier> is the name
associated with the assembly
procedure.

<integer> indicates the number
of parameter words passed to
this routine. The default is
o.

•FUNC RANDOM

1-30

·RELPROC

Form:

The Assembler

Identifies the beginning of a
dynamically relocatable
assembly language procedure.
Such assembly procedures must
be position-independent. (See
the "Program Linking and
Relocation" section in this
chapter.) The procedure is
terminated when another
delimiting directive occurs in
the source file.

[b{'. RELP!l-0C b <i<!-~nt ; Her> t',<in't-~ge,~_>]'[<~'o;"me~t»
. -.

<identifier>
associated wi th
procedure.

is the name
the assembly

Example:

<integer> indicates the number
of parameter words passed to
this routine. The default is
o.

POOF,3,
'.".. -.".

1-31

The Assemhler

.RELFUNC

Form:

Bxample:

• END

Form:

Identifies the beginning of a
dynamically relocatable
assembly language function.
The host compilation unit
expects this function to return
a function result on top of the
stack; otherwise, . RELFUNC is
equivalent to the .RELPROC
directive.

<identifier> is the name
associated with the assembly
function.

<integer> indicates the number
of parameter words passed to
this routine. The default is
o.

;RELFUNC c. i>oMf

Marks the end of an assembly
source file.

- - ..

:.~<lab"l>J·(bJ·;~ND

1-32

The Assembler

Data and Constant Definitions

.ASCII

Form:

Example:

Converts character strings to a
series of ASCII byte constants
in rremory. The bytes are
allocated sequentially as they
appear in the string. An
identifier in the label field
is assigned the location of the
first character allocated in
memory.

> >

[<Lab~L» [b) .ASCII b <cha~acter st~>;ng» [<comment»>

<character string) is any
string of printable ASCII
characters del imited by double
quotes.

"HELLO" .

.'-." .

1-33

The Assembler

• BYTE

Form:

Example:

Allocates and initializes
values in one or more bytes of
memory. Values must be
absolute byte quanti ties. The
default value is zero. An
identifier in the label field
is assigned the location of the
first byte allocated in memory.

TEMP '.BYTE 4; 'code would be '04,'he;' ",'
TEMP1 .BYTE ; code would ,be '00- hex __

1-34

• BLOCK

Fonn:

The Assembler

Allocates and initializes a
hlock of consecutive bytes in
memory. A byte value must be
an absolute quantity. The
default value is zero. An
identifier in the label field
is assigned the location of the
first byte/word allocated.

. - -

0' •

<length> is the the number of
bytes to allocate with the
initial value <value>.

Example:

The output code would be:

06 06 06 06 ;four bytes with value 06 he.

1-35

The Assembler

• WORD

Form:

Example:

Allocates and initializes
val ues in one or more
consecutive words of memory.
Values may be relocatable
quanti ties. The default value
is zero. An identifier in the
label field is assigned the
location of the first word
allocated.

[<label>] Tb].• WORD b <valueli"st> «comment>]·

TEMP .• IiORD 0,2,,4 .. -

On a processor which has the
least-significant byte first in
a word, the output code would
be:

·0000
0200

. 0000
_. -. 0400

'. . .": . . . -..",.

? th.is. is a~e.fault· y~l.ue~·

Example:

The output code would be a word
containing the address of the
label J.2.

1-36

.EQU

Form:

The Assembler

Associa tes a label wi th a
particular value. Labels may
be equated to an expression
containing relocatable labels,
externally referenced labels,
and/or absolute constants. The
general rule is that labels
equated to values must be
defined before use. The
exception to this rule is for
labels equated to expressions
containing another label.
JDcal labels Tray not appear in
the label field of an equate
statement.

<Label> rbJ ·.E~U b.<~"lue>[<comment>·i.

Example: BASE.. ·.EQU. R6

1-37

The Assembler

Location Counter Modification

These directives affect the value of the
location counter (1£ or AlC) and the location
in memory of the code being generated .

• ORG

Form:

Example:

If used at the beginning of an
absolute assembly program, .ORG
initializes the location
counter to <value>. Using .ORG
anywhere else generates zero
bytes until the value of the
location counter equals
<value>.

.ORG '. 1000H

1-38

•ALIGN

Form:

The Assembler

Outputs sufficient zero bytes
to set the location counter to
a value that is a rml tiple of
the operand value.

" [b] .ALIGN b "<value> [<comment>]. .-

Example: .ALIGN 2

This aligns the LC to a word
boundary.

Listing C~ntrol Directives

Use these directives to control the format of
the assembled listing file generated by the
assembler. These directives don't generate
code, and their source lines don't appear on
assembled listings. (For a more detailed
description of an assembled listing, refer to
the "Assembler Output" paragraph, presented
later in this chapter.)

1-39

The Assembler

.TITLE

Form:

Example:

.ASCIILIST

Form:

Example:

O1anges the title printed on
the top of each page of the
assembled listing. The title
may be up to 80-characters
long. The assembler changes
the title to 'SYMBOLTABLE
DUMP' when printing a symbol
table; the title reverts back
to its former value after the
symbol table is printed. The
defaul t value for the ti tle
is ' '.

• TITLE "MACROS"

Prints all bytes the .ASCII
directive generates in the
code field of the list file,
creating multiple lines in
the list file if necessary.
Assembly begins wi th an
implicit .ASCIILIST
directive.

(b)' '-AS.CnlIST «comment»

.' .AsCnLlSJ

1-40

.NOASCIILIST

The Assembler

Limi ts the printing of data
the .ASCII
generates to as
will fit in the
one line in the

directive
many bytes as
code field of
list file.

Form:

Example:

.CONDLIST

Form:

Example:

CbJ. NOASC i ILIST.C<comment>J ..

-
·.NOASC.IILIST -

Lists source code contained
in the unassembled sections
of conditional assembly
directives .

. (b] "CONOLIST C<<:omment>J

,CONOLIST

1-41

The Assembler

.NOCONDLIST

Form:

Example:

•NOSYMTABLE

Form:

Example:

Suppresses the listing of
source code contained in the
unassembled sections of
conditional assembly
directives. Assembly begins
with an implicit .NOCONDLIST
directive.

- .
. ,

" JbJ' .NOC<lNDL!ST «comment>}

, ,.NOCONDLIST

Suppresses the printing of a
symbol tahle after each
assembly routine in an
assembled listing.

" , (bJ " • NOS vitrABLE' «.commerit >], '

'.NOSVMTABLE .

1-42

.PAGEHEIGHT

Form:

Example:

. NARROWPAGE

The Assembler

C~ntrols the number of lines
printed in an assembled
listing between page breaks.
Assembly begins wi th an
implicit .PAGEHEIGHT 59
directive.

.[bl .PAGEHEIGHT. <j';teger~ f;<commenf>J

- .PAGEHEIGHT 40.·
..

Limits the width of an
assembled listing to 80
columns. The symbol table is
printed in a narrow format,
source lines are truncated to
a maximum of 49 characters,
and title lines on the page
headers are truncated to a
maximum of 40 characters.

Form: _ [bJ .NARROWPAGE -[<.commen~>].;, _...

Example: • NARROWPAGE

1-43

The Assembler

• PAGE

Form:

Example:

.LIST

Form:

Example:

Continues the assembled
listing on the next page by
sending an ASCI I form feed
character to the assembled
listing.

-Cbl .PAGE

.PAGE

Enables output to the list
file, if a listing isn I t
already being generated. You
can use .LIST and .NOLIST to
examine certain sections of
source and object code
without creating an assembled
listing of the entire
program. Assembly begins
with an implicit .LIST
directive.

-- Cbl .LIST
--

_.LIST

1-44

.NOLIST

Form:

Example:

.MACROLIST

Form:

Example:

The Assembler

Suppresses output to the list
file, if it isn't already
off.

(bJ .NOLIST

.NOLIST.

Specifies that all subsequent
macro definitions have their
macro bodies printed when
they are called in the source
program. Assembly begins
with an implicit .MACROLIST
directive. The section
called "Macro Language, "
presented later in thi s
chapter, gives a detailed
description of macro
language.

(I>J .".ACROLIST.

.".ACROLIST.

1-45

The Assembler

•NOMACROLI ST

Form:

Example:

.PATClll...IST

Specifies that all subsequent
macro definitions won't have
their macro bodies printed
when they are called in the
source program. Only the
macro identified and
parameter list are included
in the listing.

.. [bJ • NOI'IACROLIST

• NOI'IA CROLI ST

Lists occurrences of all back
patches of forward-referenced
labels in the list file.
Assembly begins wi th an
implicit .PATCHLIST
directive. For a detailed
description of back patches,
refer to the paragraph,
"Forward References," in the
section called, "Assembler
Output," presented later in
this chapter.

Form:

Example:

[bJ .PATCHLrST

1-46

Form:

Example:

Suppresses the
back patches
references.

(bJ .NOPATCHLIST.

•~OPATCHLI.sT

The Assembler

listing of
of forward

Program Linkage Directives

Linking directives enable corrmunication
between separately assembled and/or compiled
programs. Later in this chapter, the section
called "Program Linking and Relocation" has a
detailed description of program linking.

.CONST Allows the assembly procedure to
access globally declared
constants in the host
compilation unit.

Form: (bJ .CONST b <idl ist> «comment>J

Each <10> is the name of a
global constant declared in the
host.

Example: ·.CONST LENGTH

1-47

The Assembler

•PUBLIC

Form:

Example:

Allows an assembly language
routine to reference variables
declared in the global data
segment of the host compilation
unit .

. [bJ.· .PUBLIC b <idL ist> [<comment>j

Each <ID> is the name of a
global variable declared in the
host.

.PUBLIC I,J,LENGTH

1-48

•PRIVATE

Form:

Example:

The Assembler

Allows an assembly language
routine to store variables,
which only the assembly language
routine can access, in the
global data segment of the host
compilation unit.

Fach <ID> is treated as a label
defined in the source code.
<integer> determines the number
of words of space allocated for
<ID>.

..

-:PRIVATE. .PRINT ,BA.RRAY:9

1-49

The Assembler

.INTERP

Form:

Allows an assembly language
procedure to access code or data
in the p-code PME. .INTERP is a
predefined symbol for a
processor-dependent location in
the resident PME code; you may
use offsets from this base
location to access any code in
the PME. To use this feature
correctly, you must know the
PME's jump vector for this
location. . INTERP is generally
restricted to systems
applications .

. 'v,aL id when. u~e~. in <e)(press;on>

Example:
BOMB· .EQU

. JMP
INTERP+ERR

BOMB·

.;. hypot.het ; cal .
;' routine o.ffset

1-50

·REF

Form:

Example:

.DEF

Form:

Example:

The Assembler

Provides access to one or more
labels defined in other assembly
language routines.

. .
[bJ ,REF· <;-dlist> ~[<comment>J .

.REF SCHLUMP

Makes one or more labels, to be
defined in the current routine,
available for other assembly
language routines to reference.

- • DEF . FOON, YEEN

1-51

The Assembler

Conditional Assembly Directives

A detailed description of conditional assembly
features is presented later in this chapter in
a section called, "Conditional Assembly."

.IF

Fonn:

Example:

.ENDC

Fonn:

Marks the start of a conditional
section of source statements.

(bj ." IF 0 <·expres:sion>. [= or <> <ex p ress50,,:>] «comment>:!:

• IF DEBUG

Marks the end of a conditional
section of source statements.

(0] • ENDC «comment>]

Example: .ENDC

1-52

The Assembler

•ELSE

Form:

Example:

Marks the start
alternative section of
statements.

[bJ .ELSE [<comment>]-

.ELSE

of an
source

Macro Definition Directives

A detailed description of macro language is
presented later in this chapter in the
section, "Macro Language."

• MACRO

Form:

Indicates the start of a macro
definition.

. -'-'.

Example:

<identifier) calls
being defined.

.P'lACll~ -ADDI/ORDS .. -.

1-53

the macro

The Assemhler

.ENDM Marks the end of a macro
definition.

Form:

Example:

C-bl • ENQI'I [<comme~t»

.ENOI'I

The Assembler

Miscellaneous Directives

• INCLUDE

Form:

Example:

C~uses the assembler to start
assembling the file named as an
argument of the directive; when
the end of this file is reached,
assembling resumes with the
source code that follows the
directive in the original file.
This feature is useful for
including a file of macro
definitions or for splitting up
a source program too large to be
edited as a single text file.
You can't use .INCLUDE in: (1)
an included source file (that
is, nested use of the
directive); and (2) in a macro
definition.

till .INCLIIDE b <file' identifi,er> [<comme'np),

At least one blank character
must separate the comment field
of the . INCLUDE directive from
the file identifier.

.INCLUDE f'IYDISK:f'IACROS

1-55

The Assembler

•ABSOLUTE

Form:

Example:

Causes the following assembly
routine to be assembled without
relocation information. Labels
become absolute addresses and
label arithmetic is allowed in
expressions. .ABSOLUTE is valid
only before the first procedure
delimiting directive occurs.
Don't use . ABSOLUTE when the
assembled routine is to be
called from a high-level host.
(Refer to the "Program Linking
and Relocation" section,
presented later in this chapter,
for a detailed description of
abolute code files.)

. [bl .ABSQi.UT~[<C<)mment~J

.• ABS<lLUTE

1-56

• ASECT

Form:

Example:

.PSECT

Form:

Example:

The Assembler

Specifies the start of an
absolute section. For a
detailed description of
" . ASECT ," refer to the paragraph
called "Absolute Sections,"
presented earlier in this
chapter.

, ,

(b) .ASECT «comment»

.ASECT

Specifies the start of a program
section and terminates an
absolute section. (Hefer to the
"Absolute Sections" paragraphs,
presented earlier.)

[b) .,PSECT [<comment»'

• PSECT

1-57

The Assembler

.RADIX

Form:

Example:

Sets the current default radix
to the value of the operand.
Allowable operands are: 2
(binary), 8 (octal), 10
(decimal), and 16 (hexadecimal).
The default radix of an integer
constant is processor-specific.
(See Chapter 2.)

. IbJ .,R~DIX <i~teger>. [<comment>] .

.RADIX· 10 ; deci·mal
. ; defau~t ~ad;-x

1-58

The Assembler

CONDITIONAL ASSEMBLY

Use condi tional assembly directives to
selectively exclude or include sections of
source code at assembly time. Initiate
conditional sections with the .IF directive and
terminate them with the .ENOC directive. They
may contain the . ELSE di rect i ve. Use
conditional expressions to control inclusion of
conditional sections. C~nditional sections may
contain other conditional sections.

When the assembler encounters an .IF directive,
it evaluates the associated expression to
determine the condition value. If the condition
value is false, the source statements following
the directive are discarded until a matching
.ENDC or .ELSE is reached. If you use the .ELBE
directive in a conditional section, source code
before the .ELSE is assembled if the condition
is true; and source code after the . ELSE is
assembled if the condition is false.

Overall syntax for a conditional section (using
the meta language described earlier in the
"Assemblers Directives" paragraph) is as
follows:

. • IF· .<.coi:ldi t)-().n~ l-·-·expr.~ssfon>.
-' .',<source' s·t"at~en-t·s>.' .

.. (.ELSE . .. :. .
',': .. <sour'ce .statements·>],". .
. ·;~NDC· --:..

1-59

.. ~ -. '.

The Assembler

Conditional Expressions

A conditional expression can take one of two
forms: a single expression or comparison of
two character strings or expressions. The
first form is considered false if it evaluates
to zero; otherwise, it's considered true. The
second form of conditional expression compares
for equality or inequality (indicated by the
symbols '=' and '<>', respectively).

Examp1e:

· - - . .
• IF LABEL1~LABELi; arith~~ti c ;'xpre~s;~n .

.. ;-.This code-'is assembCed Qnly' if
.; difference is not z.ero·

. ~IF 'X1:::,iSTUFf'" ;" .o-omp~'-rison express.;of) .
., This code is assembled .o.n.ly·:ff
; outer condition' is' .t.'rue',and .
.; text of .f; rs.t, macro parameter­
;. is equa.l to "S.TUF F".

;,ENDC ; terminate 'nested -sect-ion.
; This ·code is assembled ft··outer
j. ~cindit~~"_is'tr~~ .

• ELSE.

• Et~DC·

lhis·.code is assembLed if first .
.cond·; t.; on i.s· fa l s~.
l~ermioate OU~~f section

1-60

The Assembler

MACRO LANGUAGE

The assembler allows you to use a macro language
in source programs. This enables you to
associate a set of source statements with an
identifying symbol. When the assembler
encounters this symbol (known as a macro
identifier) in the source code, it substitutes
the corresponding set of source statements
(known as the macro body) for the macro
identifier, and assembles the macro body as if
it had been included directly in the source
program. You can use carefully designed set of
macro definitions in all source programs to
simplify developing assembly language routines.

In addition, you can enhance the macro language
by including a mechanism for passing parameters
(known as macro parameters) to the macro body
while it is being expanded. This allows a
single macro definition to be used for an entire
class of subtasks.

Here is a simple example:

; macro clef i--n;'t ion.• ••
• "'ACRO STRING_ ; macro idendf.ier. is

- , -STRING ~_

;" Macro· Body: .'
; X1- and- X2 are-

0. . parameter.
; decla·rat fons _

.BYTE - ;:2- - _-; 2nd paralneter i-s-
; - l.ength byte- _

.ASCr"I -X1- --; 1st parameter is
: . arg.ument

• ENDfllI . ; '. e~ mac"ro_ def i n.i t; on .

1-61

The Assembler

Further down in the source code .•.

. -- STRIN.G "WRIJEIl,S. ";~.1st:macr~ c.all
; ·parameters".ar~.

• - '''WRiTE''1
: . ~nd IS.! -

__ S'TBING _'''TYPE .S·PACt;',10. ;. 2nd macro: c~L-~
.' ;' paramete"rs.are"·

• -.', "TYPE S'I'ACE'"
.' - ·and~_~:t6... ' -

This is what gets assembled ...

• BY:TE· .s:~~.; -da·t·a~s.t.ring·.-de·clarat-;·o-n-s"··
.•-ASCI-I· . ;'WRITE'" .
. •ByTE· '_'0. . ' .

.- .ASC"II '. "TYPE SPACE"

Macro Definitions

You may place macro definitions anywhere in a
source program and delimit them with the
directives .MACRO and .ENU.1. The macro
identifier must be unique to the source
program, except when you redefine a predefined
machine instruction name as a macro
identifier. You shouldn't include a macro
definition within another macro definition.
However, you may include macro calls. You may
nest macro calls to a maximum depth of five
levels. A macro definition must occur before
any calls to that macro are assembled, but
macro calls may be forward-referenced within
the bodies of other macro definitions.

1-62

The Assembler

Macro Calls

You can place macro calls anywhere in a source
program that code may be generated. A macro
call consists of a macro identifier followed
by a list of parameters. Delimit the
parameters with commas and terminate them with
a carriage return or semicolon. Upon
encountering a macro call, source code is read
from the text of the corresponding macro body.
Macro parameters within the macro body are
substituted with the text of the matching
parameter listed after the macro identifier
that initiated the call.

Parameter Passing

You may reference macro parameters in a macro
body hy using the symbol '%n' in an
expression, where 'n' is a single nonzero
decimal digit. Upon scanning this symbol, the
assembler replaces it wi th the text of the
n'th macro parameter. Note that macro
parameters are not expanded within the quotes
of an ASCII data string.

Three cases are possible:

1. The parameter exists-the substitution is
made.

2. The n' th parameter doesn I t exist in the
parameter list being checked (less than n
parameters were passed); a null string is
substituted.

1-63

The Assembler

3. Another symbol of the form '%m' is
encountered in the parameter list. If
nested macro calls exist, the text of the
m'th parameter at the next higher level of
macro nesting is substituted; otherwise,
the symbol itself is assembled.

You must pass parameters without leading and
trailing blanks. You may pass all assembly
symbols, except macro calls, as parameters.

The following is an example of parameter
passing in macros:

.!'IACRODOS . .
.'. UNO' . %2,UN·. ' ..

SAR %1
.END!'I .' ..

<!'IACRO UNO
!'I0V' %1,%2·

. SAt %2
.ENDI'I

1-64

SAL UN
SAR TROIS

The Assembler

In a program, the macro call •••

DOS TROIS,DEUX.

assembles as •••
.

MOV DEUX,UN; UNO. got ·UN directly, .
; "But had to use DOS's
; 2nd. Para~ . .

; DOS.·~~ed its". 9Wn _1st'
; pa-ram

Scope of Labels in Macros

A problem arises in using macro language when
the definition of a macro body requires you to
use branch instructions and, thus, have
labels. Declaring a regular label in a macro
body is incorrect if the macro is called more
than once, because the label would be
substituted twice into the source program and
flagged by the assembler as a previously
defined label. You can use
location-counter-relative addressing, but this
is prone to errors in nontrivial applications.
The best solution is to generate labels that
are local to the macro body; the assembler's
local labels can do this.

1-65

The Assembler

Local label names you declare in a macro body
are local to that macro; thus, a section of
code that contains a local label $1 and a
macro call whose body also has the local label
$1, assembles without errors. (C~ntrast this
wi th what happens when two occurrences of $1
fall between two regular labels.) This
feature allows you to use local labels freely
in macros without conflicting with the rest of
the program.

NOTE: Remember that a maximum of 21 local
labels can be active at any instant.

Local Labels as Macro Parameters

Passing local labels as parameters has a
special property. Unlike other macro
parameters, local labels aren I t passed as
uninterpreted text. The scope of a local
label passed in a macro call doesn't change
as it is passed through increasing levels of
macro nesting, regardless of naming
conflicts along the way. One use of this
property is passing an address to a macro
tha t simulates a condi t ional branch
instruction.

The following is an example of passing local
labels as macro parameters:

1-66

In a program, the code ..•

TWIE .
SUB ICHI,NI
EIN . $1

. ·RET·

The Assembler

$1

assembles as ••.

. TWIE
SUB .

JE

$1

$1

JNE

RET

ICHI,N.I . .
$1" this ref.eren-ces macro

'loca l label
$1 th;s~references

outside $1"
macro locaL. label

_, out~·i.de 5t

1-67

The Assembler

PR<XiRAM LINKING & RELOCATION

The assembler produces either absolute or
relocatable object code that you may link, as
required, to create executable progr~ from
separately assembled or compiled modules. (The
linker is described in Appendix A.)

Program linking directives generate information
the system linker requires to link modules.
Some of the advantages of linking are:

• You can divide long programs into spparately
assembled modules to avoid a long assembly,
reduce the symbol table size, and encouragp
modular programming tpchniques.

• You can enable other linked modules to share
modules.

• You can add utility modules to the system
library for a large number of programs to use
as external procedures.

• Programs can call assemhly language
procedures directly.

The assembler generates linker information in
both relocatable and absolute code files. Thp
system linker accesses this information during
linking and removes it from the linked code
file.

1-68

The Assembler

Relocatable code includes information that
allows a loader program to place it anywhere in
memory, while absolute (also called core image)
code files must be loaded into a specific area
of memory to execute properly. Assembly
procedures running in the p-System environment
must always be relocatable; the system PME
performs loading and relocation at a load
address the state of the system determines.

Absolute code won't run under the p-System
environment (under which high-level programs
must run). However, relocatable code can run
under the p-System. Code segments containing
statically relocatable code remain in main
memory throughout the lifetime of their host
program (or unit) and are position-locked for
that duration. Thus, relocatable code may
maintain and reference its own internal data
space (or spaces). In addition, statically
relocatable code saves some space because its
relocation information doesn't have to remain
present throughout the life of the program.

1-69

The Assembler

The directives .PROC and .FUNC designate
statically relocatable routines; .RRLPROC and
.R.ELFUNC designate dynamically relocatable
routines. Code segments that contain
dynamically relocatable code don't necessarily
occupy the same location in memory throughou t
their host's lifetime, but are maintained in the
code pool along with other dynamic segments
(mostly p-code); they may be swapped in and out
of main memory while the host program (or unit)
is running. Thus, dynamically relocatable code
shouldn't maintain internal data spaces if that
data must last across calls to the assembled
routine. Data that is meant to last across
different calls to the assembly routine must be
kept in your host data segments by using
.PRIVATEs and .PUBLICs.

1. Inta space is embedded in the code, but the
code doesn't move:

. .
;PROC' .fOON· " .
• WORO SPAC.E·

;ENO

2. The code moves, hut data space is allocated
in the host compilation unit's global data
segment:

.RELPROCFOON-_

.PRIVATE_ SPACE

. ',ENO

1-70

The Assembler

3. Caution: The code rmy Trove and since the
data is embedded in the code, the data may be
destroyed between calls to the routine:

.'RELPROt FOON _

- ," WORD SPACE

.END -

Code pool rmnagement is described in the
Internal Architecture Reference Manual.

Program Linking Directives

This section describes the overall use of
linking directives. All linking of assembly
procedures involves word quantities; it isn't
possible to externally define and reference
data bytes or assembly time constants.
Arguments of these directives mIst match the
corresponding name in the target module (a
lowercase Pascal identifier will match an
uppercase assembly name, and vice versa) and
must not have been used before their
appearance in the directive. The assembler
treats all subsequent references to the
arguments as special cases of labels. The
linker and/or PME resolves these external
references hy adding the link-time and
run-time offsets to the existing value of the
word quantity in question. Thus, any initial
offsets generated by including of external
references and constants in expressions are
preserved.

1-71

The Assembler

Host C~nicationDirectives

Use the direcUves .CONST, . PUBLIC , and
.PRIVATE to allow constants and data to be
shared between an assembly procedure and its
host compilation unit. For examples, see
the "Program Linkage Directives" paragraph
in the "Assembler Directives" section,
presented previously in this chapter .

. CONST

•PUBLIC

Allows an assembly procedure
to access globally declared
cons tan ts in the host
compilation unit. The linker
patches all references to
arguments of .CONST with a
word containing the vRlue of
the host's compile-time
constant.

Allows an assembly procedure
to access globally declared
variables in the host
campi lation uni t . Note: You
can use this directive to set
up pointers to the start of
mul ti-word variables in host
programs; it isn't limited to
single word variables.

1-72

•PHIVATE

The Assembler

Allows an assembly procedure
to declare variables in the
global data segment of the
host compilation unit that
the host can I t access. The
optional length attribute of
the arguments allows
mul ti-word data spaces to be
allocated; the default data
space is one word.

External Reference Directives

Use the directives . REF and . DEF to allow
separately assembled rrodules to share data
space and subroutines. (For examples, refer
ahead, in this chapter, to the paragraph,
"Example of Linking to Pascal.")

•DEF Declares a label to be defined in
the current program as accessible to
other modules. CX1e restriction is
imposed on its use-you can't . DEF a
label that has been equated to a
constant expression or used in an
expression containing an external
reference .

•REF Declares a label existing and
.DEF'ed in another module to be
accessible to the current program.

1-73

The Assembler

Program Identifier Directives

Use the directives .PROC, .FUNC, .RELPHOC,
.RELFUNC, and .END as delimiters for source
programs. You must include at least one
pair of delimiting directives in every
source program (relocatable or absolute).

The identifier argument of the .PROC or
. HELPROC directive serves two functions:
the linker can reference it when linking an
assembly procedure to its corresponding
host, and other modules can reference it as
an externally declared label. Specifically,
the declaration:

in a source program-is functionally
equivalent in the assembly environment to
the following statements:

.DEF ·FOON ; ·F.60N A1ay. be externally
; referenced

. f90N. . ;. declare FOON. as a label

This feature allows an assembly module to
call other (external and eventually linked
in) assembly modules by name. Use the .FUNC
and .RELFUNC directives when linking an
assembly function directly to a host
program; they aren't intended for uses that
involve linking with other assembly modules.

1-74

The Assembler

The linker references the optional integer
argument after the procedure identifier. It
does this to determine if the number of
parameter words passed by the host's
external procedure declaration matches the
number specified by the assembly procedure
declaration. It isn't relevant when linking
with other assembly modules.

Linking Program Modules

For information on linking with the p-System's
other high-level languages, refer to the
documentation on that particular language.

Linking with a Pascal Program

External procedures and functions are
assembly language routines declared in
Pascal programs. To run Pascal programs
with external declarations, you must compile
the Pascal program, assemble the external
procedure or function, and link the two code
files.

1-75

The Assembler

A host program declares a procedure to be
external in a syntactically similar manner
to a forward declaration. The procedure
head ing is given (with parameter list, if
any), followed by the keyword 'EXTERNAL'.
Calls to the external procedure use standard
Pascal syntax. The compiler checks that
calls to the external procedure agree in
type and number of parameters with the
external declaration. All parameters are
pushed on the stack in the order of their
appearance in the parameter list of the
declaration; thus, the right-most parameter
in the declaration will be on the top of the
stack. (For a detailed description of
parameter passing conventions, refer to the
next section, called "Parameter Passing
Conventions.")

You rrust make sure that the assembly
language routine maintains the integrity of
the stack. This includes removing all
parameters passed from the host, preserving
the SS and SP registers, and making a clean
return to the Pascal run-time environment
using the return address originally passed
to it. If you don't do this, a potentially
fatal system crash can occur, as assembly
routines are outside the scope of the Pascal
environment's run-time error facilities.
(For a detailed description of
Pascal/assembly language protocols, refer
ahead, in this chapter, to the section,
"Sharing FME Resources.")

1-76

The Assembler

An external function is similar to a
procedure, but has some differences that
affect the way that parameters are passed to
and from the Pascal run-time environment.
First, the external function call pushes
one, two, or four words on the stack before
any parameters have been pushed. Two or
four words are pushed for a function of type
real, depending upon the real size that you
are using. One word is pushed for all other
types of functions. The words are part of
the p-machine' s function calling mechanism
and are irrelevant to assembly language
functions; the assembly routine rrust throw
these away before returning the function's
result. Second, the assembly routine must
push the proper number of words (2 or 4 for
type real; 1, otherwise) containing the
function result onto the stack before
passing control back to the host. A
suhsequent section, "Sharing H-ffi Resources,"
describes a clean way to do all of this
without ever using an actual FOP or PUSH
operation.

1-77

The Assembler

Parameter Passing Conventions

The ability of external procedures to pass
any variables as parameters gives you
complete freedom to access the
machine-dependent representations of
machine-independent host data structures.
However, with this freedom COffi8S the
responsibility of respecting the integrity
of the p-machine run-time environment. To
give you a better understanding of the
host/assembly language interface, this
section enumerates the p-machine' s
parameter passing conventions for all data
types; it doesn't actually describe data
represen tations. For examples of
parameter passing between Pascal and
external procedures, see Appendix C.

You may pass parameters by either value or
by reference (variable parameters). To
manipulate assembly language, variable
parameters are handled in a more
s trai gh tforward fashion than va 1ue
parameters.

The word "tos" is used in the following
sections as an abbreviation for "top of
stack. "

1-78

The Assembler

Variable Parameters

You should reference variable parameters
through a one-word pointer passed to the
procedure. Thus, the procedure
declaration:

. ~procedu~_e ·pas~.....by:...name (var. i-,j..: f'nteger.;.
yar,Q ": .some~t.ype); .external;

would pass three one-word pointers on the
stack; tos would be a pointer to q,
followed by pointers to j and i.

A Pascal external procedure declaration is
allowed to contain variable parameters
lacking the usual type declaration; this
enables you to pass variables of different
Pascal types through a single parameter to
an assembly routine. Untyped parameters
aren't allowed in normal Pascal procedure
declarations.

The procedure declaration:

procedur~' un-typed_var (v"ar ~i; var q":
some,-t,ype); e.xtern~t; ~

contains the untyped parameter 'i'.

1-79

The Assembler

Value Parameters

Value parameters are handled according to
their data type. Pass the following types
by pushing copies of their current values
directly on the stack: boolean, char,
integer, real, suhrange, scalar, pointer,
set, and long integer. Other sections of
this rmnual describe the number of words
per data type and the internal data
format. For instance, the declaration:

procedure pass_by_va'lue (i ~ i.nteger; r : reaL);'
external; .

would pass two words or four words on
"tos" containing the value of the real
variable ' r I followed by one-word
containing the value of the integer
variable 'i'.

Pass variables of type record and array by
value in the same manner as variable
parameters; pointers to the actual
variable are pushed onto the stack. Pass
variables of type PACKED ARRAY OF CHAR and
STRING by value with a segment pointer
(described in next section).

Value parameters which are passed using
pointers should be copied into a local
data space for processing. The original
copy of a value parameter should never be
altered.

1-80

The Assembler

String and Byte Array Parameters

When a string or byte array is passed as a
value parameter to an assembly language
routine, a "segment pointer" is passed on
the stack. A segment pointer consists of
two words. The first word (tos) contains
either NIL or a pointer to a segment
environment record. (This is determined
by whether the parameter is a constant or
variable.)

If the first word is NIL, then the second
word (at tos-l) points to the parameter.

If the first word isn't NIL, then to find
the parameter it is necessary to chain
through some records. The first word
(tos) is a pointer and the second word
(tos-l) is an offset. The first word
points to a segment environment record
(EREC). The third word of that record
contains a pointer to a SIB (Segment
Information Block). If the first word of
the SIB is NIL, then the second word is a
pointer to the base of the segment where
the parameter resides. If the first word
of the SIB isn't NIL, then it points to a
Pool Descriptor. The contents of the
first two words of the Pool Descriptor
plus the contents of the second word of
the SIB is a pointer to the base of the
segment where the parameter resides.
(Note that the first word of the Pool
Descriptor contains the lR
most-significant bits, and the second word
contains the 16 least-significant bits.

1-81

The Assembler

Each word, however, is in the natural byte
sex of the host processor. On processors
that address the least-significant byte
first, this means that the bytes are in
this order: second rrost-significant,
first most-significant, fourth
most-significant, third rrost-significant.)

The exact location of the parameter is
given by the segment base plus the
contents of the second word on the stack
(tos-1), which is an offset into the code
segment.

The following figure illustrates this
accessing scheme. Note that cases 1 and 2
produce a 16-bit address which is relative
to the base of the p-System Stack/Heap
area. C~se 3, however, produces a 32-bit
absolute physical address. (For a full
description of these mechanisms, refer to
the Internal Architecture Reference
Manual.)

1-82

~
CASE 1

jOt:.::IF~TO~S_=_~N!!:IL:...._______ PARAMETER

_ -ITIIIJ

SIB

ITIIDt PARAMETER

+

BASE OF ----.J I
SEGMENT [:==J----~

IF 1ST
WORD OF
SIB =NIL

ITIJIJt PARAMETER

SASE OF -.Ji PQ{TJTI
TOR

SEGMENT [:==J + --r 1

Figure 1-2 .
A

• Strlng and Byte
rray Parameters

IF 1ST
WORD OF
SIB;: NIL

The Assembler

Example of Linking to Pascal

Note that in the following example the host
program passes control to the beginning of
an assembly procedure whether or not machine
instructions are there. Therefore, all data
sections you allocate in the procedure must
either: (1) occur after the end of the
machine instructions; or (2) have a jump
instruction branch around them.

end of procedure
D,ONOTHING, ,-

data {lrea

.CONST SIZE

•PUBLIC I,LST,1

• DEF TEMP1

POP RETURN1
POP RET,URN2

PUSH RETURN2
PUSH RETURN1

RHL

RETADR .EQU 'TEMP1
, T'EMPf .IiORD

RETURN1 .WORll
RETURN2, .WORD

.FUNC , NULLFUNC,2

.PRIVATE PRT ,LST2:9

.REF TEMP1

10 words of
'p!";-vate. data.
references. data temp
; n D,ONOTHING"
code start's 'here

, PROGRAM, ~XAMPLE; { Pascal host program ,},
canst s lZ~ ;;;; 80; .
var i,j",k: integer;

lst1: a,rray [[0 • •9] of char;
{ PRT and LST2 g,et allocated here}

procedure. do nothi n9; exter"na L; ,"
·functi.on· null -func(xxy'xx,z: ;'nteg~r:"

.- :intege.r; exterria~;

beg,;n ,
k := 45; "
do nothing;
r:= null. func(k,size);'

enq. -
.PROC DONOTHING ; .underscores are, n9t .

significant fn·Pasal'
can get at size
COf)s".tant in· host
and also, these fwo

", globaL var.s .
th; sallows, NULL'FUNC

" to get at temp1' '
code starts here~ ••
return .addr ptJsJ1ed on
stack '
"does nothing
s~t' 'yp stack .for
return . .

1-83

The Assembler

POP. _ -
RETURN'- -

POP RETURN2
pop PRT
POf> LST2+4-
POP TEMP1

PUSH -LSTc·4 .

PUSH RETURN2
PUSH RETlJRN1
RETL

RETURN' .WOR~

RETURN2 .WOR~ .

.END

; ge-t parameter IZI

i . .g~t. parameter I xxyxx"
.. : ~o~~ 1 word ~f junk.

.: (funt;c:m retu,:,.~ 'area)

.; _~erfQrms·nulL a~tio~

- ; - return ·xxyxx as

; resuLt
;. re~i~~e ~ub~ Link

;. return to~ cal L;ng·­
; program - -..
;' dat-a- starts. .here .

; 'end of i!5;sembly:

Stand-Alone Applications

The p-System assembler can produce absolute
(core image) code files for use outside of
the p-System's run-time environment.

The p-System doesn't include a linking
loader or an assembly language debugger, as
the p-machine architecture isn't conducive
to rtmning programs (whether high or low
level) that must reside in a dedicated area
of memory. You are responsible for loading
and executing the object code file; do this
by using the p-System, wi th the
understanding that the existing run-time
environment may be jeopardized in the
process. (For some ideas on how to create a
Pascal loader program, refer ahead, in this

1-84

The Assembler

chapter, to the paragraph,
Absolute Code Files.")

"Executing

Use Compress utility for a much easier and
more versatile way of doing this task. It
allows you to relocate and compact code.
Refer to Appendix B.

Assembling

Use the .ABSOLUTE and .ORG directives to
create an object code file suitable for
use as an absolute core image. •ABSOLUTE
causes the creation of nonrelocatable
object code, and .ORG can initialize the
location counter to any starting value.
Limit a source file headed by .ABSOLUTE to
no more than one assembly routine;
sequential absolute routines don't produce
continuous object code and can't be
successfully linked with one another to
produce a core image.

The code file format consists of a
one-block code file header followed by the
absolute code. It is terminated by one
block of linker information; thus,
stripping off the first and last block of
the code file leaves a core image file.
You should use .ABSOLUTE in only one
routine; though linker information is
generated, it's difficult to link absolute
code files to produce a correct core image
file.

1-85

The Assembler

Executing Absolute Code Files

The following section describes one method
of using the p-System to load and execute
absolute code files. The program outlined
isn't the only solution. You can also use
the system intrinsics to read and/or move
the code file into the desired memory
location; however, this requires a
knowledge of where the p-machine emulator,
operating system, and your program reside
in order to prevent system crashes by
accidentally overwriting them. The
program outlined below allows you the most
freedom in loading core images; the only
constraint is that the assembly code
itself isn't overwritten while being moved
to its final location. You can detect
this possibility before proceeding with
loading.

NOTE: In most cases, loading object code
into arbi tary memory locations, while a
p-System is resident, adversely affects
the system; the absolute assembly language
program is then on its awn, and rebooting
may be necessary to revive the p-System.

The loader program consists of:

1. A host program that calls two external
procedures.

2. One or more linkable absolute code
files to be loaded. (. RELPROCs aren't
allowed.)

1-86

The Assembler

3. A small assembly procedure,
MOVE AND GO, that moves the above
object code files from their system
load address to their proper locations
and then transfers control to them.

4. A small assembly language procedure,
WAD ADDRRSS, that returns the system
load-addresses of the assembly code to
the host program.

The absolute code files are assemblpd to
run at their desired locations, and
MOVE AND GO contains the desired load- -
addresses of each core image. Both
LOAD ADDRESS and IDVE AND GO have external- - -
references to the core images; these are
used to calculate the system load address
and code size of each image file. The
whole collection is linked and executed.
The host performs the following actions:

1. Print the resul t of calling
LOAD ADDRESS to determine whether the
area- of rremory in which the p-System
loaded the assembly code overlays the
known final load address of the core
images.

Issuing a prompt to continue, so that
the program can be aborted if a
conflict arises.

1-87

The Assembler

2. Calls MOVE AND GO.

1-88

The Assembler

OPERATION OF THE ASSEMBLER

You call the system assembler by pressing ,A I

wi th the operating system Command menu
displayed. This command executes the file named
SYSTEM. ASSMBLER. (Note the missing 'E' in the
file name; this is required to conform to the
file system's restrictions on file name
lengths.) If this isn't the name of the desired
assembler version, be sure to save the existing
file 'SYSTEM.ASSMBLER' under a different name
before changing the desired assembler's name to
'SYSTEM. ASSMBLFR ' • Assemblers that aren't in
use are usually saved with a file name such as
,ASM8086. CODE' •

Support Files

The p-System Assembler has two associated
support files: an opcodes file and an error
file. Always store these along with the
assembler code file.

1-89

The Assembler

In order for the assembler to run correctly,
the proper opcodes file must be present on
some on-line disk. The opcodes file has a
name such as Z80.0PCODES, 9900.0PCODES, and so
forth. The opcodes file contains all
predefined symbols (instruction and register
names) and their corresponding values for the
associated assembly language. If the opcodes
file isn't on-line, the assembler writes
I <opfilename> not on any vol' and aborts the
assembly. The 8086 assembler uses an
additional opcodes file called 8087.FOPS.
This is only necessary when you are
prograrrrning for the R087 floating point
processor.

The assembler also has an error fiJe that
contains a list of processor-specific error
messages. The error file has a name such as
8080. ERRORS, 68K. ERRORS , and so forth. The
error file need not be present to run the
assembler, but it can aid greatly in
eliminating syntax errors from a newly written
program.

Setting Up Input And Output Files

When you first call the assembler from the
Command menu, itattempts to open the work
file as its input file; if a work file exists,
the first prompt will be the listing prompt
described in the next paragraph, "Responses to
Listing Prompt," and the generated code file
will be named 'SYSTEM.WRK.OODE ' . If not, this
prompt appears:

.. A".semble. what. text?

1-90

Enter the file
press <return>.
the assembly;
appears:

The Assembler

name of the input file; then
Pressing only <return> aborts
otherwise, the next prompt

Enter the desired name of the output code
file, followed by pressing <return>.

Pressing only <return> here causes the
assembler to name the output
'*SYSTEM.WRK.(X)DE', but pressing '$' causes
the code file to be created with the same file
name prefix as the source file. The assembler
then displays its standard listing promot.

Responses to Listing Prompt

Before assembling begins, the following prompt
appears on the console:

, 8086 Ass"",bler [;ersion] , ,
:Output ',fi,le 'for"asse;"bL,ed listing:, «CR> ,for'none)

, "

:'- -

1-91

The Assembler

At this point, you may respond with one of the
following:

1. The <esc> key followed by <return>; this
aborts the assembly and returns you to the
Corrmand menu.

2. 'CONSOLE: ' or '#1: I ; this sends an
assembled listing of the source program to
the screen during assembly.

3. 'PRINTER: ' or '#6:' ; which sends an
assembled listing to the printer unit.

4. 'REM:>UT: ' or '#8:' ; which sends an
assembled listing to the REMOTE uni t •

5. A carriage return;
assembler to suppress
assembled listing and
directives.

which causes the
generation of an

ignore all listing

6. All other responses cause the assembler to
write the assembled listing to a text file
of that name; any existing text file of
that name is removed in the process. For
instance, the following responses cause a
list file named 'LISTING. TEXT' to be
created on disk unit 5:

ftS:listing.text
#5: Listing

1-92

In all cases,
ensure that the
assembler will
abort if it is
I/O unit.

Output Modes

The Assembler

it's your responsibility to
specified unit is on-line; the
print an error message and

requested to open an off-line

If you send an assembled listing to the
console, then that listing is displayed on the
screen during the assembly process; however,
if you send the listing to some other unit or
if no listing is generated, the assembler
writes a running account of the assembly
process to the screen for your benefit. One
dot is written to the screen for every line
assemhled; on every 50th line, the number of
lines currently assembled is written on the
left side of the screen (delimited by angle
brackets) .

When the assembler processes an include file
directive, the console displays the current
source statement:

.IN{LUDE .<f ile ~anie>

This allows you to keep track of which include
file is currently being assembled.

1-93

The Assembler

At the end of the assembly, the console
displays the total number of lines assembled
in the source program and the total nwnber of
errors flagged in the source program.

Responses to Error Prompt

When the assembler uncovers an error, it
prints the error number and the current source
statement. (If applicable to the error; this
doesn't apply to undefined labels and system
errors.) The assembler then attempts to
retrieve and print an error message from the
errors file. If the errors file can I t be
opened-the file doesn't exist or there isn't
enough memory-no message appears. This is
followed by the menu:

Pressing 'E' calls the editor, pressing
<space> continues the assembly, and pressing
<esc> aoorts the assembly. The following
restrictions exist when you call the editor or
attempt to continue:

1-94

The Assembler

1. In rrost cases, pressing <space> restarts
the assembly process with no problems;
since assembly language source statements
are independent of one another with respect
to syntax, it's not difficult for the
assembler to continue generating a code
file. Thus, a code file will exist at the
end of an assembly if you press <space> for
every (nonfatal) error prompt that appears;
of course, the code produced may not be a
correct translation of your source program.
The assembler considers certain system
errors fatal; these errors abort the
assembly regardless of how you respond to
the preceding menu.

2. If you press 'E I, the system automatically
calls the editor. Unless you are using a
work file, the editor prompts you for a
file name. You should indicate the file
currently being assembled. The editor
positions the cursor at the location where
the error occurred.

Miscellany

At the end of an assembly, an error message
is printed for each undefined label. In
some cases, you can ignore occurrences of
undefined labels if these labels are
semantically irrelevant to the desired
execution of the code file. The resulting
code file will be perfectly valid, but the
references to the nonexistent labels won I t
be completely resolved.

1-95

The Assembler

In addition to generating a code file, the
assembler makes use of a scratch file, which
is always removed from the disk upon normal
termination of the assembly. Occasionally
though, a system error rray occur that
prevents the assembler from removing this
file; if this happens, a new file named
'LINKER. INFO' may appear. You can easily
remove it since it's entirely useless
outside of the assembler. This should occur
rarely if at all.

1-96

The Assembler

ASSEMBLER OUTPUT

The assembler can generate two varieties of
output files. It always produces a code file,
but you can control whether or not it generates
an assembled listing of the source file.

An assembled listing displays each line of the
source program, the machine code generated by
that line, and the current value of the location
counter. The listing may display the expanded
form of all macro calls in the source program.
Any errors that occur during assembly contain
messages printed in the listing file, usually
irrrnediately preceding the line of source code
that caused the error. A symbol table is
printed at the end of the listing; it's the
directory for locating all labels declared in
the source program.

An assembled listing of a source program printed
on hard copy is one of the most effective
debugging aids available for assembly language
programs; it's equally useful for off-line,
'mental' debugging and for use with system
debuggers.

A description of the code file format is beyond
the scope of this document. See the Internal
Architecture Reference Manual.

1-97

The Assembler

Source Listing

When you respond to the assembler's listing
prompt with a list file name, a paginated
assembled listing is produced. The default
listing is 132-characters wide and 55 lines
per page. F..ach line of a source program is
included in the assembled listing, except for
source lines that contain list directives.
Source statements that contain the equate
directive .EQU have the resulting value of the
associated expression listed to the left of
the source line.

Macro calls are always listed, including the
list of macro parameters and the comment
field, if any. The rm.cro is expanded by
listing the body (with all formal parameters
replaced by their passed values) if the macro
list option was enabled when the macro was
defined. Macro expansion text is marked in
the assembled listing by the character '#'
just to the left of the source listing.
Comment fields in the definition of the macro
body aren't listed in macro expansions.

Source lines with conditional assembly
directives are listed; however, source
statements in an unassembled part of a
conditional section aren't listed unless the
.CONDLIST directive has been used.

1-98

The Assembler

Error Messages

Error messages in assembled listings have the
same format as the error messages sent to the
console, except that the prompt isn't
included. (Refer back to the section,
"Operation of the Assembler.")

Code Listing

The code field lies to the left of the source
program listing. It always contains the
current value of the location counter, along
with either code generated by the matching
source statement or the value of an expression
occurring in a statement that includes the
equate directive .EQU. All are printed in the
defaul t list radix of the assembler version
heing used in ei ther hexadecimal or octal.
(Refer ahead in this chapter to the section,
"Example Assembled Listing.") Spaces delimit
separately emitted bytes and words of code on
the same line.

1-99

The Assembler

Forward References

When the assembler is forced to emit a byte
or word quantity that is the result of
evaluating an expression that includes an
undefined label, it lists a ' * ' for each
digit of the quantity printed (for example,
an unresolved hexadecimal byte is listed as
'**', while an unresolved octal word appears
as '******'). If you use the .PATCHLIST
directive, the assembler lists patch
messages every time it encounters a label
declaration that enables it to resolve all
occurrences of a forward reference to that
label. The messages (one for every
backpatch performed) appear before the
source statement that contains the label in
question; they look like this:

<location in codefile patched>* <patch value>

With this feature, the listing describes the
contents of each byte or word of emitted
code. If you want the assembled listing to
be especially clean and neat, use the
.NOPATCHLIST directive to suppress the patch
messages.

1-100

The Assembler

External References

When the assembler emits a word quantity
that results from evaluating an expression
that contains an externally referenced
label, the value of that label (which can't
be determined until link time) is taken as
zero. Therefore, the emitted value reflects
only the result of any assembly time
constants that were present in the
expression.

Multiple Code Lines

Sometimes, one source statement can generate
more code than can fit in the code field.
In most cases, the code is listed on
successive lines of the code field, with
corresponding blank source listing fields.
Three exceptions are the .ORG , •ALIGN, and
.BLOCK directives; the code field for these
arguments is limited to as many bytes as
will fit in the code field of one line.
This is because most uses of these
directives generate large numbers of
uninteresting byte values.

1-101

The Assembler

Symbol Table

The symbol table is an alphabetically sorted
table of entries for all symbols declared in
the source program. Fach entry consists of
three fields; the symbol identifier, the
symbol type, and the value assigned to that
symbol. The symbol identifiers are defined
in a dictionary printed at the top of the
symbol table. Symbols equated to constants
have their constant values in the third
field, while program labels are matched with
their location counter offsets; all other
symbols have dashes in their value field, as
they possess no values relevant to the
listing.

1-102

The Assembler

Example Assembled Listing

The following is an example assembled
listing. It demonstrates several of listing
features just discussed (including macro
expansion, forward references, syntax
errors, and the symbol table):

1-103

The Assembler

2,4,6,8,10,-12,14,16,18;20,2·2..

BP-,SP ; Th,is ts the :beg!'nnirig
~X, (BP+22Hi

SA"'PLE "'ACRO %1 %2
AX,%1 -
DX,%2

10,OFH

.EQU

.BYTE

.WORD
• WORD

.PROC EXAMLE_LISTING

8H

"'OV
LOS

."'ACRO
"'OV

. "'OV
-. END'"

RET~

- .EN!? '

- "'OVE- -, AX~BX
-. MOV- AX-;<BX) ,

C"P~ - AX, CONS;" 7
JE' ,-,_ ·END· - - _

SA"'PLE "'AeRO CaNST 8,'AX
"'OV - AX,CONST 8 - ,
I'IOV - -c O,X-,AX -

- ",oli- - _- CX,AX" ,-

START

AX,BX, _
structuf'e

.. _. Symbol T"able. __
AB.~·Aj,sol~te til '- Label .',- ·UO .; Undefined MC - -"'aero'

·-RF-·': Re.f, OF'-·Oef. - ~ PJl,~'Proe, - -FC --Func '_
-PB.-,Publie PV·": Private _ CS_.-_Cons-ts'
_ALLONES LB 0019\ CONST7··' UD --:-::':-1- -CONST8 _-_ --AB 00081 E.ND -Ui'_00~7,'--
EXAI'ILELIPR .---"1· "'aVE _- UD -,-----1 SA"'PU"'A - '",e .":---:-1 5T,ART" ~ 0023 '

"TABU La 00031 - VARBYTE -LB 00001-, _VARWORD- __ LB _00011-
,»»>dlNST? ... '-' . - - - - - ' -,

error:-·.1·: undefined label'
- . ·»»>"'OVE.' -.

error - .' :'. undefined Label_: .'..
Assembl-y e-omptete: '-28-- l i-n-es '

- 3. -errors _fl-agged -on- this .assemb-lY -

err'or
.. 00281

0028f 8B·· 07 - .. .
002A I 3B 06 **** .
002E I 74**- '-
00301
0030~ B& 06 ~C
00331. 8B 00­

·00351 '8B· C8
- 002F* '.07

00371 CB
00381..
0.0381.

.- 00001
00001
00001 0008 - CaNST 8
00001 _00 VAR BYTE
00011 0000 VAR-WORD
.00031 0200 0400 0600 0800' _TABLE_
0006 I DAOO OC90 OEOO 1000

·00131 1200 1400 1600
00191 OF OF OF Of OF OF OF ALL_ONES .BLOCK

.00231
·00231

00231
- 00231·
00231

,- 00231 __
__ .00231 8B EC

00251c5 5E- 22 .
MoVE

18: i-nval id

1-104

CHAPTER 2

PROCESSOR-SPECIFIC

INFORMATION

Processor-Specific Information

INTRODUCTION

This chapter is intended to be used in
conjunction with processor manuals distributed
by the manufacturers of the various processors.
These manuals provide syntax conventions for the
instruction sets and address rrodes used by the
corresponding assembler versions. The company
chosen as a base for syntax conventions is
listed for each version, along with a list of
deviations from that company's syntax
conventions.

2-3

Processor-Specific Information

LSI-II/PDP-II ASSEMBLER

Syntax Conventions

The 11 assembler adheres to DEC standard
syntax for opcode fields, register names, and
address rrodes. The location counter symbol is
an asterisk '*'

Sharing PME Resources

The return address to the system is passed on
the stack. Registers 0 and 1 are available to
the assembly routine; other registers must be
saved on entry and restored on exit.

Memory Organization

The 11 processor is byte-addressed
word-oriented; machine instructions and
words must be aligned to start on an even
boundary. The byte sex
least-significant-byte-first.

Default Constant and List Radices

and
data
byte

is

The default constant radix and default list
radix are octal.

2-4

Processor-Specific Information

Z80 ASSEMBLER

Syntax Conventions

The 280 assembler adheres to Zilog standard
syntax for opcode fields, register names, and
address modes. The following conventions may
deviate from this standard:

• The syntax for exchanging the register pair
AF and the alternate register pair 'AF' is
the following:

EX .AF'"

The location counter symbol is a dollar
sign '$'.

Sharing PME Resources

The return address to the system is passed on
the stack. All registers are available for
use in the assembly routine.

Memory Organization

The Z80 processor is byte-addressed and
byte-oriented. The byte sex is
least-significant-byte-first.

2-.5

Processor-8pecific Information

Default Constant and l~st Radices

The default constant radix is decimal and the
default list radix is hexadecimal.

2-6

Processor-8pecific Information

6502 ASSEMBLER

Syntax Conventions

The 6502 assembler adheres to Rockwell
standard syntax for opcode fields and register
names. The following conventions may deviate
from this standard:

II Immediate operands are specified by using a
preceding pound sign '#' character:

lABEL .EriU .. 5
. LDA ilLABEL· ;- fm,;,edOiate

II Zero-page addressing is achieved only by
using absolute operands (that is, assembly
time constants) with values between 0 and
255:

LABEl- .• EQU 5
LDA LABEL ; zero-page

0-

II Indirect addressing has the following form:

. L~Ao - ° iLABEL,X .
LDA- il.ABEL, Y
J.MP iLABEL

; indexed-ind;ree~ (pr.eindexing)
; indi rect-indexed (post)"ndex;ng)
; indi rect Jump -'

The location counter symbol is an asterisk
'*'

2-7

Processor-Specific Information

Sharing PME Resources

The return address to the system is passed on
the stack. All registers are available for
use in the assembly routine.

Memory Organization

The 6502 processor is byte-addressed and
byte-oriented. The byte sex is
least-significant-byte-first.

Default Constant and List Radices

The default constant radix and default list
radix are hexadecimal.

2-8

Processor-Specific Information

6800 ASSEMBLER

Syntax Conventions

The 6800 assembler adheres to Motorola
standard syntax for opcode fields and register
names. The following conventions may deviate
from this standard:

• All instructions which can specify the A
and B registers have the register name
separated from the opcode field:

LOA.
- LOA

LOX.
STA

-PUL
ASL

A,LABEL
A,O,X
O,x.

. A,14°,X

A
B

(i°nstead of LOA
(i nstead of LOA

A.,X) -0

X)

• Immediate operands are specified by using a
preceding pound sign '#' character:

LABEL -. EQU - 5
LoA A,#LABEL 0 _-; ;mmediate

• Zero-page addressing is achieved only by
using absolute operands (that is, assembly
time constants) with values between 0 and
255:

LABEL .EQU 5
LOA B,LABEL ; 'zero-page

2-9

Processor-Specific Information

• Numbers in hex rmst always contain four
digits (yes, even for bytes):

.eYTE·. 0002H)lOA9H
. -

. spec if i es·· the Quant i ty 02A9 base ·16

The location counter symbol is an asterisk
'*'

Sharing PME Resources

The return address to the system is passed on
the stack. All registers are available for
use in the assembly rrnltine.

Memory Organization

The 6800 processor is byte-addressed and
byte-oriented. The byte sex is
most-significant-byte-first.

Default Constant and List Radices

The default constant radix is decimal and the
default list radix is hexadecimal.

2-10

Processor-Specific Information

8080 ASSEMBLER

Syntax Conventions

The R080 assembler adheres to Intel standard
syntax for opcode fields, register names, and
address modes. The location counter symbol is
a dollar sign '$'.

Sharing PUE Resources

The return address to the system is passed on
the stack. All registers are available for
use in the assembly routine.

Memory Organization

The 8080 processor is byte-addressed and
byte-oriented. The byte sex is
least-significant-byte-first.

Default Constant and List Radices

The default constant radix is decimal and the
default list radix is hexadecimal.

2-11

Processor-Specific Information

9900 ASSEMBLER

Syntax Conventions

The 9900 assembler adheres to TI standard
syntax for opcode fields, register names, and
address modes. The following conventions may
deviate from this standard:

• In operand fields, the lack of an address
mode character (for example, a '@' or '*'
preceding the operand) defaults to '@'.
The location counter symbol is a dollar
sign '$'.

Sharing PME Resources

The return address to the system is passed in
register 11. Registers a thru 5 are available
to the assembly routine; other registers must
be saved on entry and restored on exit.

Memory Organization

The 9900 processor is byte-addressed
word-oriented; machine instructions and
words must be aligned to start on an even
boundary. The byte sex
most-significant-byte-first.

2-12

and
data
hyte

is

Processor-Specific Information

Default Constant and List Radices

The default constant radix is decimal and the
default list radix is hexadecimal.

2-13

Processor-Specific Information

6809 ASSEMBLER

Syntax Conventions

The 6809 Assembler adheres to Motorola
standard syntax for opcode fields and register
names. The following conventions may deviate
from this standard:

II Immediate operands are specified by using a
preceding '# I :

ANDC6 . #0.1

• Indirect addressing is
single leading at sign
square brackets ('[]'):

specif ied by a
('@') instead of

• Zero-page addressing is achieved only by
using operands that are absolute (for
example, not labels) and less than 256:

ZEROPAGE .EQU 15
LOB ZEROPAGE

2-14

Processor-Specific Information

Sharing PME Resources

The return address to the system is passed on
the stack. Registers Y and U must be saved
and restored if they are to be used. All
other registers are available for use.

Memory Organization

The 6809 processor is byte-addressed and
byte-oriented. The byte sex is
most-significant-byte first.

Default Constant and List Radices

The default constant radix is decimal and the
default list radix is hexadecimal.

2-15

Processor-Specific Information

Z8 ASSF.MBLER

Syntax Conventions

Symbols

The 28 Adaptable Assembler adheres to Zi log
standard syntax (refer to the Z8 PLZ/ASM
Assembly Language Progranming Manual) for
opcode fields, register names, and
addressing modes.

Numeric Constants

The 28 Assembler follows the constant
conventions of other adaptable assemblers,
except that octal constants are indicated by
a radix switch character of '0' rather than
'Q', and binary constants are indicated by a
radix switch character of 'B' rather than
'T' .

0111010e DB 1.4670 . 111160.

Predefined Constants

There are no
Assembler.
'%L', '%T',
Zilog syntax

predefined constants in the Z8
Specifically, the constants

'%R', '%P', '%%', and 'roQ' in
are NOT allowed.

2-16

Processor-Specific Information

Sharing PME Resources

No ~lli is currently available for the Z8.

Memory Organization

The Z8 processor is byte-addressed and
byte-oriented. The byte sex is
least-significant-byte-first.

Default and List Radices

The default constant radix is decimal and the
default list radix is hexadecimal.

2-17

Processor-Specific Information

8086/8088/8087 ASSEMBLER

Syntax Conventions

The p-System 8086/88/87 Assembler differs in
some respects from the standard Intel
assembler. This section lists these
differences.

Assembler Directives. None of the Intel
assembler di rec ti ves are imp lemen ted.
Instead, the assembler directives described in
Chapter 1 of this manual are available.

Parenthesis. Enclose index or base register
references in a memory operand in parentheses,
not square brackets; for example, FIRST(BX)
rather than FIR~TrBX]. Group expressions with
angle brackets rather than parentheses.

Immediate Byte. Code ADD irrmediate byte to
memory operand as:

ADDBI'" memop,immedbyte.

to distinguish it from the ADD memop,
irrrnedword, which is the default. Similarly,
MOVBIM, ADCBIM, SUBBIM, SBBBIM, CMPBIM,
ANDBIM, ORBIM, XORBIM, and TESTBIM are added
to the vocabulary.

2-18

Processor-Specific Information

Memory Byte. Code INC memory byte as:

I NCI'IB memop

to distinguish it from INC memory word, which
is the default. Similarly, DECMB, MULMB,
IMUlMB, DIVMB, IDIVMB , NOTMB , NEGMB, ROIMB ,
RORMB, RCLMB, RCRMB, SAlMB, SHIMS, SHRMB ,
SARMB are added to the vocabulary to specify
memory byte operands.

Direct Addressing Mode. Code ~~V with direct
addressing as:

.......
MOVM - AX,02DEFH
1'I0VI'I· . .02D.EFH,AX.

to distinguish it from ~V i.mr.1ediate value
which is the default. Similarly, ~1, ADDM,
ANU1 , CMHJ, ORM, SBBM, TESTM , and XORM are
added to the vocabulary for use with direct
addressing.

2-19

Processor-Specific Information

MOL and DIV Byte. In MUL, IMUL, DIV, rnIV
the single memory operand form,

fIIUL memop

implies a word operation. To specify a byte
operation, you may use either MULMB memop, or
the form

·fIIUL AL,memop

The same holds true for IMUL,
(Note that DIV AL,memop is rather
as the actual operation
AX/memory-byte.)

DIV, IDIV.
misleading,
would be

MOV Substitute for LEA. For LEA reg,label or
lEA reg,label+const the assembler substitutes
MOV reg ,immedval where immedval = label or
label+const. This saves four clock times (4
versus 8).

IN and OUT. The normal form of IN and OUT is
IN ac,port or IN aC,DX and OUT port,ac or OUT
DX, ac where ac=AL denotes an R-bi t data path
and ac=AX denotes a 16-bit path. Since the
accumulator is the only possible register
source/destination (DX specifies port=address
in DX) , single operand forms are also
provided: INS and OUTB for byte data, and INW
and OUTW for 16-bit data. The syntax is INS
port or INB DX.

2-20

Processor-Specific Information

In the two-operand fonns of IN and OUT, the
order of the operands isn't important; thus
OUT aC,DX or OUT ac,port will be acceptable.

String Operations. The mnemonics for the
string operations are suffixed with B or W to
denote byte or word operations ; thus, MOVSB
and MOVSW, CMPSB and CMPSW, SCASB and SCASW,
LOOSB and LOOSW, and STOSB and STOSW are in
the vocabulary, but MOVS-STOS aren't.

Segment Override. XLAT and the string
instructions (9) have implied memory operands
and nothing is required to be coded in the
operand field. However, to permit you to
specify a segment override prefix in the case
of XLAT, MOVSB/MOVSW, CMPSB/CMPSW, and
LOOSB/LOOSW, the assembler permits operand
expressions for these instructions.

NOTE: That only the default segment for SI,
namely OS, can be overridden. The segment for
01 is ES and can't be overridden. A segment
override prefix of OS applied to SI doesn't
generate a segment override prefix.

If you were to write these operations with
operands, they would have this syntax:

XLATAL,(BX)
MOVS<B/W}(O I) ,(seg:) (S I).

CMP5{ll/W} (oi) ,(seg:) (SIl
SCAS{B/W}(O·I) ,A·X
LOOS{B/W}AX~(seg:) (Sr)
STOS<e/W}(OI) ;AX

2-21

Processor-Specific Information

You may prefix the string instructions with a
REP (repeat) instruction of some type. The
assembler flags an error if you specify both
REP and a segment override.

In addition to the forms ~S:memop, and so on,
you may write a separate mnemonic SEG followed
by a segment register name in a statement
preceding the instruction mnemonic. For
example:

MOV AX;ES:AVALUE

is equivalent to:

',SEG ES MOV 'A5<"AVALUE.

Long Jumps, Calls, and Returns. Implement
intersegment CALL, RET, and JMP as follows:

1. The mnemonics
specifically
operations.

CAlJ.J...J, RETL, and JMPL
designate intersegment

2. An indirect address (for example, (reg) or
(label)) is assembled in standard fashion
wi th a "mod op rim" effective address byte
possibly followed by displacement bytes.
The memory location referenced must hold
the new IP, and the next higher location
must hold the new CS.

2-22

Processor-Specific Information

3. The direct address form must have two
absolute operands:

-.'. :

. CALLL el<.llr'-1,exp.r2 -

.- "'.- '.'

where exprl is the new IP and expr2 becomes
the new CS. Constants or external symbols
(for example, .REF definitions) qualify as
absolute operands.

8087 Mnemonics. Mnemonics for the 8087
floating point operations are standard except
for some of the memory reference operations,
where a letter suffix is appended to denote
the operand size:

D short real or short integer (double word)

Q long real or long integer (quad word)

W integer word

T temporary real (ten byte)

The 'D' and 'Q' suffixes apply to the
following real ops:

FADD, FCCM, FCCMP, FDIV, FDIVR, FMUL,
FST, FSUB, FSUBR, FLD, FSTP

For example, FADDD, FADDQ, and so.

The 'T' suffix applies only to FLD and FSTP.

2-23

Processor-Specific Information

The 'W' and 'D' suffixes apply to the
following integer ops:

FIADD, FlCOM, FlOOMP, FIDIV, FIDIVR,
FlMUL, FIST, FISUB, FISUBR, FILD,
FISTP

The 'Q' suffix for long integers applies only
to FIID and FISTP.

Sharing PUR Resources

Calling and Returning

The p-machine ernulator (PME) calls an
assembly routine using the call long (CALLL)
operator. Thus, the top of the stack
contains a two-word return address upon
entering into the routine. In order to
return from an assembly routine, use the
return long (RETL) operator.
(AIternatively , the return address can be
popped and a jump long (JMPL) operation
used.)

2-24

Processor-Specific Information

Accessing Parameters

The R086/8R Processor contains instructions
that facilitate accessing parameters passed
to an assembly routine. By moving the value
of SP (which points to the p-machine stack)
into BP, you can access the parameters hy
adding an offset of 4 bytes (to account for
the two-word return address). The first
parameter, located four bytes above the top
of the stack, is actually the last declared
parameter in the host routine (the
parameters are pushed in the order that they
are declared).

If a •FUNe assembly routine is to return a
function value, you should place it just
above the last parameter (Which is just
before the first declared parameter) using
the same accessing scheme. The size of the
returned function value is either one, two,
or four words as described in a previous
paragraph called, "Linking with a Pascal
Program. "

You may give the RETL operator an operand
that indicates how many bytes to cut the
stack back after popping its two-word return
address. Use the size of the data space
occupied by the parameters. Thus,
parameters may be accessed, and a clean
return rmde, without ever using a specific
POP or PUSH instruction.

2-25

Processor-Specific Information

The following is an example of this scheme
of accessing parameters and returning:

MOV BP,SP
MOV AX,(BP+4Y'
MOV . BX, (BP+6Y .
MOV • ex, (BP+8)

;Last Pa"ram
. ;Middle Paralll

:F; rst Param

MOV (BP'l-10) ,liSLT ;Function ·ri,turn. ~al
; (it . FUNCl- , ...

. RETL 6' ;Relll<ive 3.paralli'

Register Usage

All of the 8086/88 registers are available
for use by your assembly routines (the PME
saves and restores the register values that
it needs).

However, you must preserve SS and SP. (You
may create and use a private stack if a
minimum of 40 words are left available for
stack expansion during interrupts. This is
a very dangerous procedure, however, and is
not recommended.)

NOTE: You must rmintain the integrity of
the p-machine stack. If you don't, the
results can't be predicted.

2-26

Processor-Specific Information

Upon entering into the assembly routine, SS
points to the base of the p-machine stack
and data area. Also, 08, ES, and CS are all
equal to the base of the p-System code
segment.

Parameters that are passed as Pascal VAR
variables are p-System pointers to actual
data. These pointers are relative to SSe
For example:

··I'IOVBX, ·(BP+4) .; p·ick ~p. ·parameter·(poi~ter)

. ·.l'IqVAX,..S5,(BX.'· i·pick up· VAR parameter vatoe, .

. PRIVATE and .PUBLIC variahles are also SS
relative. For example:

. COUNTER ..
. AX,55: CQUNTER ...

•BYTE quantities, .WORD quantities, and
. REF I ed labels are relative to CS, OS, or
ES.

Memory Organization

The 8086 processor is byte-addressed and
byte-oriented. The byte sex is
least-significant-byte-first.

2-27

Processor-Specific Information

Default Constant and List Radices

The default constant radix is decimal. The
default list radix is hexadecimal.

2-28

Processor-Specific Information

68000 ASSEMBLER

Syntax Conventions

The 6800 Assembler follows Motorola standard
syntax for opcode fields, register names and
address modes. The following list points out
some restrictions.

• Only the absolute short address rrode is
available. The absolute long address can't
be generated by the assembler.

• Labels rmy not be accessed with the
absolute address mode.

• References to labels with a .PROC or .FUNC
generate the PC-relative address mode.

• An external label rmy only be accessed as a
displacement from an address register.

• Immediates above FFFFH can't be generated.

• Opcodes which have an optional suffi~ of A,
I, M, Q or X must contain that suffix
explicitly.

• Length qualifiers (.B, .W or .L) must be
specified explicitly in those instructions
which have a choice of length. All other
instructions must not contain a length
qualifier.

2-29

Processor-Specific Information

The following instuctions must contain a
length qualifier:

ADD, ADDA, ADDI, ADDQ, ADDX, AND, AND I ,
ASL (register), ASR (register), CLR,
CMP, CMPA , CMPI, CMPM, £DR. , £DRI , EXT,
IBL (register), LSR (register), MOVE
(except special forms), ~VEA, MOVEM,
MOVEP, NEG, NEGX, NOT, OR, ORI , ROL
(register), ROR (register), ROXL
(register), ROXR (register), SUB, SUBA,
SUBI, SUBQ, SUBX, TST

The following instructions must not contain a
length qualifier:

ABCD , ASL (memory), ASR (memory), BCHG,
BCLR., BSET, BTST, CHK, DBcc, DIVS, DIVU,
EXG, JMP, JSR, LEA, LINK, lBL (memory),
LSR (memory), MOVE to CCR, MOVE to SR,
MOVE from SR, MOVE USP, MOVEQ, MUIS ,
MULU, NBCD, NOP, PEA, RRSET, ROL
(memory), ROR (memory), ROXI..J (memory),
ROXR (memory), RTE, RSR, RTS, SBCD, Scc,
STOP, SWAP, TAS, TRAP, TRAPV, UNLK

The following instructions may contain an
optional length qualifier of .S (generate
short forward branch):

Bcc, BRA, BSR

2-30

Processor-Specific Information

Sharing PME Resources

An assembly language procedure is called via a
JSR instruction, so it should expect a double
word return address on the stack. It is usual
to return via an RTS instruction.

Registers AO-A2 and OO-D7 are available for
use. Register A3-A7 must be restored to the
values at call-time if they are used.

Since pointers wi thin the p-machine are byte
offsets from a. base register (A6) , . PUBLIC;
references to Pascal variables will generate
an offset, not the actual address, of the
variable. In order to access an external
variable, it is necessary to use this offset
as a displacement from A6. For example:

ADDQ.W #1;ABC<A6J

will increment the Pascal variable ABC.

2-31

Processor-Specific Information

A variable parameter is
the parameter, so it
above. For example, a
be accessed as follows:

a p-machine pointer to
is also accessed as

variable parameter may

.MOVEG
MOVE.W _

. AOOQ.• W .

.#0,07 .; dear· the upper haLf· of 07
4(SPJ ,07 _.; Load the pointer..(param"-terJ
#·1,O(A6;07.U . .i inc.r-enient. th~ yariable·

References to variables in other assembly
language procedures (via a .REF) may be
accessed as above using (A2), provided the
segment the procedures are in is located in
the data area (for example, it isn't a
RELPROC) .

Here is
available
on entry:

a list of the register values
to the assembly language procedure

A2 - base of. current segment
A3 :. base of PME
A4 - p-machine progtam counter
A6 - .. pointer to dati! area
A7 ~·stack pointer

:1.-32

Processor-Specific Information

The .INTERP directive (used to access items in
the mE) is ignored. Instead, accesses should
be made relative to A3 (the base of the PME).
The following entry-points are available to
the assembly language programmer:

ro~~i.ne .' offset'- . parameters- _
..~... Q"i;ii DO.w - execution error number

NAfRH 08H

XEQERR may be used to cause an execution error
to be recognized from assembly language.
XEQERR should be jumped to, not called.
Before jumping to XEQERR, the stack should be
clear of all parameters (including the return
word), and all registers should be restored.
This routine is normally used for system work.

NAT RET is the entry-point used by
automatically generated native-code to return
to the p-System. It shouldn't be used for any
other purpose.

Memory Organization

The 68000 processor is byte-addressed and
word-oriented. The byte sex is
most-significant-byte first.

Default Constant and List Radices

The default constant radix is decimal, and the
default list radix is hexadecimal.

2-33

APPENDICES

APPENDIX A
THE LINKER

The linker is an item on the Corrrnand menu which
allows assembled code to be linked into a host
program. The linker may also he used to link
together separately assembled pieces of a single
assembly program.

The linker is a program of the sort called a
"link editor." It stitches code together by
installing the internal linkages that allow
various pieces to functon as a unified whole.

When a program that must be linked is R(un, the
linker is automatically called and searches
*SYSTEM.LIBRARY for the necessary external
routines. If you use X(ecute, instead of R(un,
or the assembled routines aren't in
SYSTEM. LIBRARY , you are responsible for manually
linking the code before executing it.

When the linker is called automatically and
can't find the needed code in *SYSTEM. LIBRARY,
it responds with the following error message.

Proc, .
Func,

.. GLobaL . .
or PUbli'c <'jdentifier>" uflde'fi.ned'

In order to manually use the linker, select
L(ink from the Corrrnand menu.

A-3

Appendix A

Using the Linker

The linker displays prompts asking for several
file names. It reads and links code together,
and displays the names of the routines it is
linking. The following paragraphs list those
prompts and explain the use or responses.

Host file? The host file should contain the
code for the high-level program
which references external routines.
Alternatively, the host file may
contain an assembled routine which
references other assembled routines.
The ".CDDE" suffix is automatically
appended to the file name that you
specify (unless you tenninate that
name with a period). If you respond
wi th <return>, the linker attempts
to open the code work file as the
host file.

Lib file? Any number of lihrary files may be
specified. The prompt will keep
reappearing until you press the
<return>. Responding '*<return>,
opens *SYSTEM.LIBRARY. The
successful opening of each library
file is reported. If the routines
in a lib file reference other
routines, those other routines are
also linked into the output file
(assuming that they are found in one
of the lib files).

A-4

Appendix A

Example (underlined portions are your input):

Lib file? *<return>-
Open;ng *SYSTEM. LIBRARY
L;b f;le? FIX.8<return>
No fHe FIX.8.CODE
Ty.pe <sp>(continue), <esc><terminate}
Ub fil!,? FIX.9<return>

. Open;ng FIX.9.CODE
bad seg name .
Type <sp> (cant 1nue) -' <esc> <ternd nate",. <space>
Ub File? .

When the names of all library files have been
entered, the linker reads all the necessary
routines from the designated code files. It
then asks for a destination for the linked code
output:

Output file? Respond with a code file name
(often the same as the host
file). The .CODE suffix must be
included. If you press <return>,
(*SYSTEM. WRK. CXlDE) becomes the
output file.

After this last prompt, the linker corrrnences
actual linking. During linking, the linker
displays the names of all routines being linked.
A missing or undefined routine causes the linker
to abort with the '<identifier> undefined'
message described above.

A-5

Appendix A

NOTE: Since the files may be assembled files,
they may be of either byte sex. However, all
files linked together must be of the same byte
sex. The linker produces a correct code file
regardless of which hyte sex that is or whether
it is the same as the machine on which the
linker is running.

The code file produced by the linker contains
routines in the order in which they were given
in the library files. This is important to note
if the program is an assembly language file.
The code file contains first routines from the
host file and then library file routines, all in
their original order.

A--6

APPENDIX B
THE COMPRESS UTILITY

The Compress utility program takes an input code
file consisting of one or rrore linked assembly
procedures. It produces an object file suitable
for execution rnltside the p-System run-time
environment.

Compress can produce either relocatable or
absolute object files. Absolute code files are
relocated to the base address specified by you
and contain pure machine code. Relocatable code
files include a simplified form of relocation
information (a description of its format is in
this appendix). Both kinds of output files are
stripped of all file information normally used
by the system and must be loaded into memory by
your program in order to execute properly.

Preparing Code Files

The assembly routines must be created with the
assembler, and linked with the linker. Code
files containing anything other than one segment
of linked assembly code will cause Compress to
abort. Routines to be compressed shouldn't
contain any of the following assembler
directives •

•ORG
•PUBLIC
.CONST

•ABSOLUTE
•PRIVATE
.INTERP

A-7

Appendix B

The .ORG and •ABSOLUTE directives produce
absolute code files directly from the assembler.
Code files that contain the .ABSOLUTE directive
can be compressed, but the resulting code will
be incorrect.

The . PUBLIC , .PRIVATE, .CONST and .INTERP
directives are used to communicate between
assembly procedures and a host compilation unit
(whether Pascal or some other language). These
have no use outside of the system's run-time
environment. Their inclusion in an assembly
program generates relocation information in
formats that will cause C',ompress to abort.

Running Compress

In order to run Compress, you should X(ecute
COMPRESS.CODE. This utility displays the
following prompt:

AssembLy Code Fi.le" c~mpressor -<release' version>
Type I! I to ~scape .._
Do you wish to produce~ a reLoc.atabLe object file? (YIN)

If you press 'N', the following prompt appears:

Base address of r.,Locat;on (hex)~ :

A-8

Appendix B

This is the starting address of the absolute
code file to be produced. It should be entered
as a sequence of 1 to 4 hexadecimal digits
followed by <return>. The prompt will reappear
if an invalid number is entered.

The following prompt always appears:

'FiL~ to compress:

Enter the name of the file to be compressed. It
isn't necessary to enter the '.CODE' suffix. If
the file can't be found, the prompt reappears .

. ' . .
Output ,file «ret? for ,same) : '

Enter the name of the output file, which can be
any legal file name ((',ompress doesn I t append a
.CODE suffix). Pressing <return> causes the
output file to have the same name as the input
file, thus eliminating the original input file.
If the file can't be opened, Compress will print
an error message and abort.

In all the
character '!'

previous prompts, pressing
causes Compress to abort.

A-9

the

Appendix B

After receiving this information from you,
Compress reads the entire source file,
compresses the procedures, and writes ou t the
entire destination file. Large code files may
cause C~mpress to abort, if the system doesn't
have sufficient memory space.

While running, Compress displays for each
procedure the starting and ending addresses (in
hexadecimal) and the length in bytes. After
finishing, the total number of bytes in the
output file is displayed. If an absolute code
file is produced, the system displays the
highest memory address to be occupied by the
loaded code file.

('-empress produces a file of pure code, which
must be loaded and executed directly by your
software.

A-iO

Appendix B

Action and Output Specification

Compress removes the following information from
input files:

• The segment dictionary (block 0 of code
file) •

• Relocation list and procedure dictionary
pointers.

• Symbolic segment name and code sex word.

.. Embedded procedure DATASIZE and EXITIC words.

• Procedure dictionary and number of procs
word.

• Standard relocation list.

Procedure code in the output file is contiguous,
except for padding bytes, which are emitted
(when necessary) to preserve the word alignment
of all procedures. ('...ode files a.lways contain an
integral number of blocks of data and space
between the end of the executable code. The end
of the code file is zero-filled.

Relocatable object files must be formatted in
the following way. The relocatable code is
immediately followed by relocation information.
The last word in the last block of the code file
contains the code-relative word offset of the
relocation list header. The following lines are
an example.

<starting byte address of loaded code> + <word offset. * 2>
= <byte address of relocation"l ist heade"r" "word>

A-l1

Appendix B

The list header word contains the decimal value
256. The next-lower-addressed word contains the
number of entries in the relocation list. This
word is followed (from higher addresses to lower
addresses) by the list of relocation entries.

Benea th the last re loca t ion en try is a
zero-filled word, which rmrks the end of the
relocation information. Each relocation entry
is a word quantity containing a code-relative
byte offset into the loaded code. The following
lines are an example:

<starting l5-yte addt'ess '~f Loaded code~_ + <byte ,offset>
= ,<byt-e addr~ss of .wor~·to be ;e~o~ated>' .

Each byte address pointed to by a relocation
entry is a word quantity that is relocated by
adding the byte address of the front of the
loaded code.

NOTE: If you relocate a file towards the high
end of the 16-bit address space, you must ensure
that the relocated file won I t wrap around into
low memory (that is, <relocation base address> +
<code file size> must be less than or equal to
FFFF (hexadecimal)). C'...ompress performs no
internal checking for this case.

A-12

APPENDIX C
CODING EXAMPLES

The first section in this appendix defines the
memory allocation scheme for Pascal data
structures. (This is necessary to understand if
you want to interface with these data structures
from assembly language.) The second section
gives assembly language coding examples (using
the 8086 as the example processor) which
interface with the various Pascal data
structures. The final section contains some
examples of typical routines that you might need
to write.

A-13

Appendix C

PASCAL DATA STRUCTURES

Given the following Pascal declaration:

'TYPE REC' RECpRD,
FIELD 1, FIELD 2 INTEGER:

HELD-3,F,IfLD-4 REAL;
, FIEL(): CHAR;

END'; ,
VAR A RECORD ,: REC;

The order,of allocation of :the fields is:'
,FIELD 2 - 1 word for an' integer
FIELO-1. - 1 word for an ,integer
FIELJ>-4' - 4" words for' a' rea l
flELD-3 - ,4 words for a real
FIELil-s -'1 word; the low-order byte of, which is 'used

In general.·, v~r.;abLes ar.e aLl~ca.ted· space uSlng ·t"h~ 'fo~~o~ing scheme:­
Ntti element of t,he first decl,.ration ,list", "
(N-1) thO, e It'ment, 'of.' 'the f frst dec l'''ratTon l i ..t,

, (N-2),th',e,'tement' pt"th,e first, dec~arat,ion l{sf

First element 'of tWe fir~t ~eclarat';'0!'l lis.t
N,th element of. ,the st'c'ond dectaration, list
(N~1>thelement,of these~onddedarati-on l,ist

Nth e(ement of the .Last" de,clara~ion (ist
'. ,

Fi-rst- ,element of .th'e (as~' de·c~a·ration. ·l:;st.·"
Using.' t.h";s ·s.c~.~me~ the' .follow.fri~ .two. t·ype. d~·c[.a.rati.ons are
allocated identically:
, , TYPE RECf' =' ,RECORD
, ' ' A INTEGER;

, B : INTE.GER,:
, , C : INTEGER;'
, END;

, : REC2 'RE'CORD
'C;B;.A INTEGER;

END;

A-14

Appendix C

INTERFACING WITH PASCAL

This section contains several examples of
assembly language interfacing with the various
types of Pascal data structures.

Example 1:
Passing Variables by Value

one word of parameters
itore Stac~ Pointer into-the
usable Base Pointer . .
the last~decLared parameter •••
.i n this case ther.e i.s only' ODe •••

.is 4·bytes down/up in.·the stack
,_ becctuse of .the two··.word return:

address 9n the top of the stack
just to· do· something
the return .location -f.or a furtcti'on

, aLways starts ·in. the ·byte following-
;' the '~deepes~" ·p.~ramet·e·r.·:·~., .'

one para!Ueter:-,. a. one" WOfd. :;nt~ge'r,
".; th~re·f.or.e, ~he' next lo~ation' ':is .
.;. two· by·tes further .into.··the· stack·
,. th~re-. ar·e two byies.· of pa.r~mete·rs

t~ b.e...rem~ve9 ·.fr~m the st~c'k' ~efpte
;.. ·returni.ng to ·Pascal ••• note .-that the
, f.unc~·io~ ·.va~ue· fs. not' af·f~c.teq·.

AX, (BP+4)

2

.AX
(BP+6) ,AX

MOV

RETL

INC
MOV:

program var"iables t~ assembLy;
(* this program. wiLL-be used as· a. driver
for a number of assembly routines *).

functi<in ';nt_~y_value (.on lY""pa ram: ~.ntege.r): i nteger; exter~al;.
. begin

write~n(int by value{l)
end. - - .
• FUNC ·INT BY VALUE~l

MOV BP,sp .~.

·.EN!>

A-15

Appendix C

Example 2:
Passing Variables by Reference

integer); external;

one word of parameters •••
in this case. it is a pointer
to the actuaL variabLe •••
all pointers are reLative to
the 55 register at the start
of an assembly routine
familiar save of SP
move only parameter into
ex. ax;s used because
only certain registers may
be used for a particular
job•••BX, 51 or DI must
be used when address i ng
through an offset
fetch the vaLue of the
parameter
just to do something
put the new value back
into the variabLe for
PascaL
two bytes of parameters

BP,5P
BX,<BP + 4)

MOV AX,55: <BX)

INC AX
MOV 55: <BX) ,AX

RETL 2
.END

program variables to assembly;
var ·parameter-to-routine: integer;
procedure i-nt_by_referenee (var onlyyaram:
begin-

parameter to routine := 1;
int by reference(parameter to routine);
writeLn(parameter to routine)

end. - -
.PROC INT_BY_REFERENCE,1

MOV
MOV

A-16

MOV BP,SP
MOV BX, (BP + 4)

MOV AX,SS:(BX)

INC AX
MOV (BP+6) ,AX

RETL 2
.END

Appendix C

Example 3:
Passing Pointers By Value

program variabLes to assembly;
type pointer to iot = in-teger;
var paramet;r to routine: pointer to inti
function point_by=vaTue (onlyyaram: pointer_to_int): integer: external.~

begin
newCparameter to rout ine);
parameter to routine := 1;
writeln(point by value(parameter_to_routine »

end. - -
• FUNC POINT_BY_VALUE,1 one word of parameter

in this case, the actual
value of a pascal pointer
will be passed
familiar
mav the parameter into
BX ••• this will be a Pascal
pointer which is relative
to the SS register
using the parameter as a
pointer ••• access the vaLue
of the variable
do something
.store the new value into
the function return word
two bytes of parameters

A-17

Appendix C

Example 4:
Passing Pointers By Reference

:= 1·

integer;~

pointer_to_i nt); external:

one word of p~rameters .
in this. case, ~he pa~a~eter

is a poi nter to .a Pasca l
pointer ••• yeah, two levels
of indirection .
famH iar
mov the parameter' into BX~.
BX because it is an offset
fetch· the Pascal ·variable•••
a· pointer to' an "intege:r: .
prepare to get" a.ctual value
fetch the value that is
pointed to by the Pascal
pointe.r .
do ·someth i·ng
store th~ new val~e in

;. th<t Pasc·al va .. i a.ble
~.;. t~.o byt.es~-of· pa.ramet"e"rs -."

BP,SP
BX, (BP + ·4)·

AX
. ss :(BX).,AX

BX,AX . .
AX,S5: (BX)- .

program variabLes. to assembly;
type pointer· to int =
var parameter to routine: pointer to inti
procedure point_by_reference (var onlyyaram:
begin - .
ne~(parameter to routine);
parameter to. routine
point by referenc~(parameter to routine):
writeln(-parameter to routi.ne-

end. - -
• PROC POINT_BY_REFERENCE,1

tNC .
MOV

RETL.··· ,-2·
.ENi>

MOV.
MOV·

MOV
Mov

A-18

Appendix C

Example 5:
Passing Heals By Value

real): . .real;: e.x.ternaL; .

store the vaLue .'
n~xt word of par.ameter

s.tore the value
"' n~x t .word of pa ramete r

4 words .of -parameters.'
.";. b"ecau-se reats are., stored

.as four';word ·nu~be!,.s
., tam; liar
". last 'word of parameter:~..

the' low-orde'r 'byte_s of
the mar:'l~issa

BX,6.
-NIJIIlBER(BX) ,AX ­
AX,(BP+6)
Bx,4.
,NUMBER (BX) ,AX
AX-, (BP+8)­
-BX,2. ­
NlJlIBER(BX),AX
AX, (BP+10)

"'OV,
MOV

'MOV
MOV-_
MOV
MOV
MOV
MOV
I'IOV _

; ·stOre the value -
; first word of parameter •••
.; contains hig.h-order byte
;. of mantissa -"and the exponent

MOV _NUI'IIlER,AX _ ; -store -the value -
{ do_ something wi,th the number, in this case multiply .it by ten •••

for example, incre~ent the exponent by Qne}"' .
MOV, ,AX ,NUMBER "
INC -- -AH' .:-exponent is high-order byte
MOV NUMBER,AX
<. the next sectio'1 stores the .new 'valu~s into the s.tac~ for ':-

the function return to Pascal)
I'IOV BX,6.
MOV AX,NUMBER(BX)
MOV (BP+12)',AX
MOV BX,4.
MOV AX~NlJMBER (BX)
MOV (BP+14) ,AX -

- MOV BX~2. -

,MOV , BP,SP
"'OV - - A~;(BP+4)

program var.iableyas,sing:
" function real_by_value (onlYJ'arameter:

begin - ,- ,
wr i tel-n(rea l by' va lue (1 0.0>: 4: 1,)

,end. - -

'. fUNC

A-19

Appendix C

MOV
_MOV

MOV
MOV
RETL
NlJIlBER
.ENO

AX,NUIlBER(BX)
_ (BP+16) ,AX

- AX,NUMBER
(BP+18) ,AX -

8
.BLOCK 8

Examp1e 6:
Passing Reals By Reference

progr.am variaQLeyassingi
. var pa ram': rea L' ;
procedure real by reference
begin - --

pa-ram := 10.0;
real by reference(para~)i
wr i teln{param:4: 1)

end"•

• PROC REAL_BY_REFERENCE,1

MOV BP,SP
Moil BX,(BP+4)

- MOV AX,S5: (BX+6)

INC AH

1I0V SS:_(BX+6i-;AX
RETL 2
.END

(var onlYJ'ar~meter: reaD; external;

one word of parameter
a pointer to the' real
va"r; abl'e
familiar
mov the address of the
variable into the

; " addres"S" register
;_ fetch the last" word of the

variable (a four word
real, last word is six
bytes offset) -
increment the ~xponent•••
stored in the high order

-byte -
store. the new value

A-20

Appendix C

Example 7:
Passing Characters By Value

char): char; external;

one.wprd of parameter
the Low order byte
contains the charact~r

familiar.
get parameter
increment the ch~racter•••
make an "A" a "8",_
and so forth
store vaLue for function
retufr:'t

la l))

proSlran. variabLeyass'ing;
function char_by_vaLue (onLYJlarameter:
begin

writeLn(char by value
end. - -
,FUNC

I'lOV BP,SP
I'lOV AX, (BP+4)
INC . AL

I'lOV (BP-+6) ,AX.

RETL 2
.END

A-21

Appendix C

Example 8:
Passing Characters By Reference

program variableyassing;
var param: char;
procedure char by reference
begin . --

param :=. t a ';
char by reference (param);
\lriteln(param) .

end •
• PROC CHARJBY~EFERENCE,1

MOV BP,SP
MOV BX, (BP+4)

MOV AX,SS: (BX)

INC AL

MOV SS: .(BX) ,AX
·RETL 2
.END

(var only_parameter: char); externaL;

one word of parameter
is a pointer to a
character variabLe
familiar
get the address of the
actual variable
fetch the value of the
variabLe
increment. the character •••
for example, "An to "elO

restore var; able

A-2?

Appendix C

Example 9:
Passing Arrays By Value

<SP+6) ,AX ..

BP;5P
BX, (SP+4)
AX,55 :.(SX+1.8)

MOV
MflV
MOV

MOV·

progra~ variabL~'yassing;
type ·... ry = array [1 ••10] of int-eger;

. var param: ~ry;'

i: i.nteger;
function array by 'value (oolyyarameter~ ary):. intege-r; ext~rnaL-;
be.gfn - - .

for i-:= 1.· to ·10 do para.m[i] := i;
writ·eLn(array by value (parain»

end. .- - ..

.• FUNC ARRAY_BY_VALUF,1 ,.one word of parameter~••
a regula·r array', i·s aJways.
passed by refe-renee, ie ..-', -

_, the· address is th.e paramete.r
;·famtlia~ .

-load the addre~s

,. fetch the· last .word· in the
~ar'~a·Y.·.·;off·set of 9 words

r from t·he ;.nitia"l element"
ret'urn ··th~ el"ement - in the

"f1Jncti.on .·retu~n word
RETL 2
.END

A-23

Appendix C

Example 10:
Passing Arrays By Reference

one word of parameter •••
a regular array is always
passed by reference, for
exampLe, the address is
the paramete r

familiar
load the address
fetch the last word in the
array ••• offset of 9 words
from the initiaL eLement
return the element in the
function return word

(BPi6) ,AX

BP,SP
BX,(BP+4)

. AX,SS: (BX+18)

MOV
MOV
MOV

MOV

variableyassing;
ary = array (1 ••10) of integer;
param: ary;
i: integer;

function array by reference (var only~arameter: aryl: integer; external;
begin - -

for i := 1 to 10 do param(iJ := i;
writeln(array by reference (param»

end. - -
.FUNC ARRAY_BY_REFERENCE,1

program
type
v-ar

RETL 2
.END

A-24

Appendix C

Example 11:
Passing Packed Arrays By Value

ary): integer; .external;

one word of parameter •••
a packed array of something
other than character is
passed as a reguLar array
familiar

. Load the address
zero AX
fetch the last byte in the
array •••offset of 9 bytes
from the initial eLement
return the eLement in the
function return word

(BP+6l,AX

BP,SP
BX,(BP+4l

. AX,AX
AL,SS: (BX+9l

var; ableJ>ass ; n9;
ary = packed array [1 •• 10) of O•• 255;
param: ary;
i: integer;

function packed_array_by_value (onlYJ'arameter:
begin
for; := 1 to 10 do paramC;] :=. i;
writeln(packed array by value (paramll

end. - --
.FUNC PACKED_ARRAY_BY~VALUE,1

program
type
var

110V
110V
XOR
110V

110V

RETL 2 .
• END

A-25

Appendix C

Example 12:
Passing Packed Arrays By Reference

Mev' 8P,SP
Mev 8X, (BP+4)
xeR AX,AX
Mev AL,SS:(BX+9)

Mev. (BP-!6) ,AX .,

RETL 2 .
• END

. , one word of paramete:r ..•
a packed array of' something
Qther than. character is
passed as a reguLar array
famili-ar
load the address
zer·o AX
fetch the last. byte in the
array •••offset of 9 bytes
from the initial element
~eturr:'l the elefllent in t~e_
func;:tion return word

var; ableyassing;
ary ~ packed array [1 ••10].of 0•• 255;
param: ary;
;: integer;

function packed array·by reference
(var -onlyyarameter-: ary): i.nteQ.er; external;

begin
·for. i ':= 1 to 10 do param[;) := i;
wri teln(packed array by reference (param»

end.' - --
.FUNt PACKED_ARRAY_BY_REFERENCE,1

program
.type·
var

A-26

Appendix C

Example 13:
Passing Strings or Packed
Arrays of Character By Value

'char'; externat;

BP~SP .
AX,(BP+4)

• FUNC. STRING~BY_V"'LUE,2 Ident IcaL -to Packed·
.. , ·A.r.r·~'; 9f Char· by VaLue:

.t.wo words of parameters·
; .·are a se9!Aent ~ po{nfe r

";- to the.~tring parameter
familiar

., TOS·::.;"f _NIL, for'­
examp~e;' ;:. Or ..next,' word
is a,pointer;..if no"t

.i NI~, for exampLe, <> 0,
s.t range:thi ngs •••.

N1L'is an :hipleinentatiQn ,dependent value ••• here .i-t ; s
assumed. t9 j;)e' equal 'to O••• this may not necessari Ly·
be the :cas.e } _ .

:rfST . A~,;Q.
JE EA.SY

MOV
.... MOV

program var1abLeyassin"9i . .'.
function string by value (onLy param: s.tring):
begi"·- - . . .:-.
.wri..teln(:str·;ng_bY~value· (. 'some.thing!.'))

. end.

HARD
{ not NIL ••• therefore, ;s a-PQ;nte~ te a Segment··

Environment Record., the third 'word of which i~"a ... ·
pointer to- the ·S-IS·," hence. the 4 .in. the ne.xf

·stat·,,-ntent. The sec9nd wore! of the. SIB.. is the
pointer to the' actual segment t~at c·ontain's. .the
string. } .

lltOV .BX,AX. ,. load .f'addr-ess" register
.MOV . DI,SS: (ex" 4) get- address of S18·

MOV - ex,ss: (01 + 2) get address of bas,,· of
'actual segment

MOV AX, (BP+6) get ne~t.word 9f Parameter •••
thi·s ·is· the offset, into
the actual -se~gment for
th.e strin-g . ..

ADD 8X,AX , . .compute pe;nter to stri'n'g •• ~
<pointer *to· segment> plus

.,.~offset> .
JMP F{)UNO .we now hav.e. ·th·" add·res_s. of

the. string i·n BX •• ;jump
; ·to do the wor1< .

EASY

t"he st.. ing in BX. }
·zero A·X
fetch· the· fi rst· cha·racter ••. :

'. ignore the Length byte

) ptJt the character 'in.to "1:h·e
funct ion' return word .
on the stack

(BP+8) ,AX

now have the address of
·AX,AX
AL,SS.: (BX+1)

MOV

<. is NIL••• therefpre the second·",ord on
the stack· is the poi!:'ter· t.o the stri,"!g }

MOV BX,(BP+6)
FOUND

{ we
. - XOR

MOV

RETL 4
.END

A-27

Appendix C

Example 14:
Passing Strings By Reference

program variabLe_passing;
var param: string;
procedure st ri n9_by_reference
begin
write('» ')i
readLn(param);
string by reference (param);
w~iteLn(param)

end •
• PROC STRING_BYJlEFERENCE, 1

1'I0V BP,SP
1'I0V BX,(BP+4)

XOR ·AX,AX
"OV AL,SS: (BX+1)

SUB AX,32.

1'I0V SS: (BX+1) ,AL
RETL 2
.END

(var 0':lLYJ>sram: string); external;

one word of parameter
15 the pointer to
a string
fartli liar
load pointer into "address",
register
zero AX
ignore Length byte and
move the first character
of the string into AX
turn a lowercase character
into an uppercase character
••• it is assumed that the
input string is in
lowercase
restore the character

A-29

Appendix C

Example 15:
Passing Packed Arrays
of Character by Reference

one word of parameter
is·th~-pointer to .
·a stri n9
familiar ..
toad po".; nter ; nto "address"
regi~ter

z~ro .AX·
move the fi rst character..
of the packed array into AX'
turn a lowercase character
into an uppercase. cbaracter'

.... .·it ; s assumed .that the,
input packed array.is in
to.wer~ase
restore the cha-,~ct.e ':"

program var; ab'l~'-passing;
type ary = packed array [1 •• 1ln of char;,
var param: ary;
procedure packed_a,:"ray_b~_reference(var onlyyaram:
begin .

param := 'characters';'
packed array by'reference (param);
writeln(param) -

end •
• PROt . PACKfD_ARRAY_BY_RfFfRfNCf;1

",ov BP~SP
",ov ex, (e.p+4)·

XOR AX,AX
",ov AL,SS: (ex) ..

,SUB AX·,32. ..

'",ov '55: (ex) ,AL ;.
Rf.TL 2 - .
• fND

ary); e.xternal:.

A-3D

Appendix C

Example 16:
Passing Records By Value

BP~SP .
.' BX·,.(BP+4)
-AX-,~S: fBX).

MOV

PIOV
MOV.
MOV'

progr~m variablej>asS"ing;
type . r.f£C .=" reco'rd _. . .

.. - ; am 2nd,; .am'1.st; ·integer;
i=am=4t·h,~i=am=3~q.:.cha'r;. .

.. end; ~

. var param: rec;. . ..
function re-col'd- by va lue' :(o~ ~yj,~~~~:, r"e'c): .c~h~ r;-. ~x-te-r~a r;"

. begtn'" . - --- --

with 'para"", de
begin' ...

. --.--iam '2nd :=' 1·
... i-:-am:-1st :.=: ii.

",i-:im""7"4t"h := "a l ,;

. ";-am-3rd ::. .'b~';
. "e'nd;'- ,'... '.- .

writelo(·r~cord_b.y~v~l!Je (paraOi .>-) ._ ..
"end.· -

,HINe R_E.eOR-_O...:.B(y"lUE·, 1_ .. '- ;o~e w~~d .of p~r~lIieter;•• a
; recp.r~:f j s' pas'sed- exac"t ly

·:~-t~~:$~~e:wheth~r·~t··i~.~ .
. ; value -or" a-·re'fe.r:enc.e.

. ,:, .pa r'ame',t:e"r:a··pO"i nt~'r .to .th e"·
T struttu~e: i.·s. o,n "t"e."t"ap· ,"

, 0'1' the: sta.ck. . ..
f.am; liar.

,. access ttle' pOi'n"ter: : ,"'
"access "t"he',fii"st word ..

,.'91 tije·record.:.·,_the last· .
" v'a'r"iable 'in the' f.irst '

, HeLd.deda-ratidn:list,. ,,;.- ~~~:,h::" ;~s_:.~:~p~:~.Eige~r~", ..
{ til<! fo.llo.w.ing "is' an .example ·of. ac,,~~~;(\g <inothe'r' {ield'

in-t~e r:ecord",i.n th.is case;_the' ttddf.wor.d 6f ·t~¢ r'e(:"Q·rd.­
contains a cl,ar ~th~' la~~ v:ariabl~. i.h the _s~co~d_.. ·

_de.claratipn-lisH, .A·s. ~a char is stared. i~.. the.
-tow-:-o~der.byte o:f. ~~e !,ord, the 'off"set should be' even
.address of the wo~d, .> . -

'Xolr :nx·,ox.) zero- OX' . '
flIOV . ·DL;SS,.:JBX.+~.) . - ~ , ; acc"e'ss' the 'c'ha'r'acter and _,

_, store ·i·t in the _·low-.order.­
byte.of 'ol(--

; .place· the char.a.c·ter -in the
tunc.tfen- ·retu.r!1_ ~9'rg_

~ETL ·2
.END·

A-31

Appendix C

Example 17:
Passing Records By Reference

• ,i_3m_1st);
I, i_3m_2nd);.
I , ; - am 3 rd) ;
I , (~am=4th)

DL,SS: (8X->6)

program. variabley3ssing;
ty~e rec ;:; record

; am 2nd,; am 1st: integer;
. i-am-4th,i:-am-3rd: char;
end;' - --

var param : rec; _
procedur:e reco.rd by refere-nce (var .onL.yyaram: 'ree); extern~~.;
be9;;" -.-:

wi tff param do
.. begin

. i am 2nd' :;:;' 1 ;.
i-aJll-1st -:= 2­
i-am-4th := 'a';,'
i-am:-3rd" :~ 'b',.;

e'nd";" -
writeLn('before cal t l

);

wi th param do
begin

writeln('; am .1st ',i 'am 1st);
'writeLn(' i-am-2·tid • ,f=:am=2r"!d);
:write.lfl(q=am=3r~ ',i am 3rd);
writeln('; am 4th I ,(~a~=4th)

end; . '- -

"re-c.ord by reference (par.am);
.wr; teLn('afte~ '.call.');

with p,!ram_do
. begi.n

wr.iteLn('; am 1st
·writ.eln(' i-am-2nd
wri·teln(' Cam-3rd

. writeLn(' i-am-4th
end - -

end.
.PROC one word 01- parameter

is "a pointer-to a structure·
MOV. 8P,SP fami Li.a.r
MOV 8X, (8P+4) access the paramete-r.
{ .this routine switch~·;; the values tif the variables

in the record ••• the first and·se~ond·are both integers
.and.the third and· the fourth ·are characters}·

MOV AX,-SS·: (8X) . . get fi rst word o·f record
MOV DX,SS: (8X+2) get se~·ond word of record.
MOV. SS;(8X),DX restore
MOV .SS:(8X+2),AX , variabLe·s

. XOR AX~AX zero AX
·XOR DX,DX zero·DX

MOV. AL,SS:(8X+4) get Low-order byte of
.; the third.word

get low-order. byte_of
the f9urth word-

MOV SS: (8X+4) ,DL restore

A-33

Appendix C

MOll
RETL
.ENO

.55: (BX~) ,A.L
. 2

'·v·ariables

Example 18:
Multiple Parameter Passing

; two words 'of pqr'amet"ers
{'TOS is a pointer to',a .
, record passed as a r~ference

.parameter ••• 105-1 ;'5

, .8 poi nter to a record
passed-as Q value param~ter

a'cc~ss T05-1 for' the add~ess

91 ,the value p~rameter
~ access 10S·for the address

of t.he reference parameter"
t·he."first field of ,the reco.~d

is a ten element array of
; nteg~rs,~ ".thef'efore Ule
offset of the last element
i,s 9 words or 18 bytes •••
there are'10 elements ·in· the
~rray

MOV 01, <SP+4)

MOV. BP,5P
MOV . BX, (BP+6)

.PRO~

1\:00 .01,18.

·.MOV" ex,10.

var

'program strangeyar.ains;
~y.pe r.ec. =. recQ'rd .

·.-.fieLd1; .arrayC1 ••10J of·integer;
field2,.f.ieLd3: ~har;-

end;"'· . .

p.aram1,param2~ rec;
i: integer; .

.procedure mult(yarams
(vatue rec: rec; var refe~ence_rec: rec): external:

begin -
.wi th param1 do

. beg·in
for i ;= 1 to 10 do fieldHiJ ;= i;
fieLd2 := 'a";·
fiel~ :; "'b';.

end:
multiyarams (param1,param2) •. '
.with param2 do

- begin
for i := 1 to 10 do' writeln('element' ,i,' ',field1Ci]);
writeln('field2 . ,ftetd2): .

. ~ritel.n(·field3 ',field3)
end: .

.end: ..

A-34

Appendix C

DI,22.

AX,SS: (aX:t2)

ss: (DI+2) ,AX

4

S5: (D'1l "AX

.AX,SS: (aX)

ADD

"'OV

MaV

"'OV

, RETL
.END '

.{ the following loop reads the 10 elemen~s of the array
in the value parameter and stores them fn .reverse order
in the"array in the reference paratlleter ••. that is why
the 'offset of the last element is needed (see above). }

MOV . AX,SS:(ax) load next element
MOV S~:(DI),AX store it
INC ax the next element; s
INC ax 2 bytes. offset
DEC DI back up to· previous

DEC DI element ••• 2 bytes
LOOPNi START decrement CX, if not

o then loop to START
, access next element p~st

the array in the reference
parameter
load the next field from
the vaLue parameter
store it in the last field
of the reference parameter

,. loa.d the last field from
the value parameter.
store it in .the next-to-last
fi~~d ~f the r~fer~nc~ paraM

START

A-35

Appendi::"" r;

Example 19:
Program to Determine NIL

NIL is a machine-dependent value. If you want
to determine what NIL is for your system, you
can use the following Pascal program. Note that
the value of NIL for each processor is listed in
Appendix N.

integ'e"r);

A-36

Appendix C

USEFUL ROUTINES

This section contains some example routines that
might be found generally useful.

function readport (port: integer): integer; external;
procedure writport (port, value: integer); external;"
procedure readmemory .

(segmnt, offset: integer; var result: integer); external;
function Lookup (entry: ; nteger): ; nteger ~ externa l;

The first routine, below, reads a byte from an
I/O port. The second routine writes a byte to
an I/O port. The third routine reads an
arbi trary byte from memory. The last two
routines work together to quickly look up an
item in a table.

A-37

Appendix C

.FUN(REAOPORT,1 read byte 110 port
PORT .EQU 4 port number to read fro~

RESULT .EQU 6 result of function
ENTRY MOV BP,SP , p.oint to parameters'

MOV ox, (BP+PORTl fetch port number
IN Al,OX read byte·from port
XOR . AH,AH: put zero to extend to word
MOV .(BP+R ESULTl ,AX set returned resuLt
RETL 2 cut stack by 2 bytes for parameter
.PRO~ WRIJPORT~2 write byte 110 port

VALUE .EQU 4 value"to :write
PORT .EQU 6

MOV BP;SP
MOV OX, (BP+PORTl

MOV' AL, (BP+VALUE) fetch value t~ write
OUT OX,AL .; byte output value

. R·ETl 4 cut back two.parameters words
·.RELPROC REAOMEMORY,3 . , read word of ·memory

VARPTR .EQU 4 pointer-to variable
OFFSET .EQU 6 pointer tOo memory
SEGMENT .EQU .8 segment of memory

·MOV . BP,SP point to parameters
LOS' . BX,(BP+OFFSETl f~t6h extended 'po"inter
MOV AX, (BX) memo,,:y word
MOV 01, (BP+VARPTR) . poi nter to variabLe ...
MOV.. SS: (OU ;AX sto~e in variable.in stack se9~ent
RETL .6 .. ; pop three parameters

.RELPROC PR Ii'lE·S

.OEF TABLE
TABLE .WORO .1,2,3,5,7 ;11,13,.17,23

• RELFUNC LOOl<UP, 1·
.REF TABLE

LAST .• EQU 8
ENTRY .EQU 4
RESULT .EQU 6

MOV .BP,.SP
MOV BX, (BP+ENTRY) fetch index
CMP BX,LAST check range
JA. S01 do nothing if too high
MOV SI,BX ~6py to index register
MOV AX,TABLE(BXJ (SU· ., tr~cky word index

·MOV. (BP+RES.ULTl ,AX store result
S01 RETL 2

.ENO

A-38

APPENDIX D
6502 SYNTAX ERRORS

1: undefined lahel
2: operand out of range
3: must have procedure name
4: number of parameters expected
5: extra symbols on source line
6: input line over 80 characters
7: unmatched conditional assembly directive
8: must be declared in .ASECT before used
9: identifier previously declared

10: improper format
11: illegal character in text
12: must .EQU before use if not to a label
13: macro identifier expected
14: code file too large
15: hackwards .ORC not allowed
16: identifier expected
17: constant expected
18: invalid structure
19: extra special symbol
20: branch too far
21: I£-relative to externals not allowed
22: illegal macro parameter index
23: illegal macro parameter
24: operand not absolute
25: illegal use of special symbols
26: ill-formed expression
27: not enough operands
28: LC-relative to absolutes unrelocatable
29: constant overflow
30: illegal decimal constant
31: illegal octal constant
32: illegal binary constant
33: invalid key word
34: unmatched macro definition directive
35: include files may not be nested

A-39

Appendix 0

36: unexpected end of input
37 : • INCLUDE not allowed in macros
38: label expected
39: expected local label
40: local label stack overflow
41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count
44: no local labels in .ASECT
45: expected key word
46: string expected
47: I/O - bad block, parity error (CRC)
48: I/O - illegal unit number
49: I/O - illegal operation on unit
50: I/O - undefined hardware error
51: I/O - unit no longer on-line
52: I/O - file no longer in directory
53: I/O - illegal file name
54: I/O - no room on disk
55: I/O - no such unit on-line
56: I/O - no such file on volume
57: I/O - duplicate file
58: I/O - attempted open of open file
59: I/O - attempted access of closed file
60: I/O - bad format in real or integer
61: I/O - ring buffer overflow
62: I/O - write to write-protected disk
63: I/O - illegal block number
64: I/O - illegal buffer address
65: nested macro definitions not allowed
66: '=' or '<>' expected
67: may not equate to undefined labels
68: .ABSOLUTE must appear before 1st proc
69: •PROC or . FUNC expected
70: too many procedures
71: only absolute expressions in .ASECT
72: must be label expression
73: no operands allowed in .ASECT
74: offset not word-aligned

A-40

Appendix 0

75: LC not word-aligned
76: index register required
77: 'X' or 'Y' expected
78: zero-page address required
79: illegal use of register
80: index register expected
81: ill-formed operand
82: 'X' expected for indexed addressing
83: must use 'X' index register
84: must use 'Y' index register

A~l

APPENDIX E
6800 SYNTAX ERRORS

1: undefined label
2: operand out of range
3: must have procedure name
4: number of parameters expected
5: extra symbols on source line
6: input line over 80 characters
7: unmatched conditional assembly directive
8: must be declared in .ASEcr before used
9: identifier previously declared

10: improper format
11 : illegal character in text
12: must .EQU before use if not to a label
13: macro identifier expected
14: code file too large
15: backwards .ORG not allowed
16: identifier expected
17: constant expected
18: invalid structure
19: extra special symbol
20: branch too far
21: DC-relative to externals not allowed
22: illegal macro parameter index
23: illegal macro parameter
24: operand not absolute
25: illegal use of special symbols
26: ill-formed expression
27: not enough operands
28: DC-relative to absolutes unrelocatable
29: constant overflow
30: illegal decimal constant
31: illegal octal constant
32: illegal binary constant
33: invalid key word
34: unmatched macro definition directive
35: include files may not be nested

A-42

Appendix E

36: unexpected end of input
37: . INCLUDE not allowed in nncros
38: label expected
39: expected local label
40: local label stack overflow
41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count
44: no local labels in .ASECl'
45: expected key word
46: string expected
47: I/O - bad block, parity error (CRC)
48: I/O - illegal unit number
49: I/O - illegal operation on unit
50: I/O - undefined hardware error
51: I/O - unit no longer on-line
52: I/O - file no longer in directory
53: I/O - illegal file name
54: I/O - no room on disk
55: I/O - no such unit on-line
56: I/O - no such file on volume
57: I/O - duplicate file
58: I/O - attempted open of open file
59: I/O - attempted access of closed file
60: I/O - bad format in real or integer
61: I/O - ring buffer overflow
62: I/O - write to write-protected disk
63: I/O - illegal block number
64: I/O - illegal buffer address
65: nested macro definitions not allowed
66: '=' or . <>' expected
67: may not equate to undefined labels
68: .ABSOLUTE must appear before 1st proc
69: .PROC or .FUNC expected
70: too many procedures
71: only absolute expressions in .ASECT
72: must be label expression
73: no operands allowed in .ASECT
74: offset not word-aligned

A-43

Appendix E

75: lC not word-aligned
76: 'X' expected for indexed addressing
77: 'A' or 'B' expected
78: invalid operand
79: comma expected

A~4

APPENDIX F
6809 SYNTAX ERRORS

1: undefined label
2: operand out of range
3: must have procedure name
4: number of parameters expected
5: extra symbols on source line
6: input line over 80 characters
7: unmatched conditional assembly directive
8: must be declared in .ASECT before used
9: identifier previously declared

10: improper format
11: illegal character in text
12: must .EQU before use if not to a label
13: macro identifier expected
14: code file too large
15: backwards .ORG not allowed
16: identifier expected
17: constant expected
18: invalid structure
18: extra special symbol
20: branch too far
21: LC-relative to externals not allowed
22: illegal macro parameter index
23: illegal macro parameter
24: operand not absolute
25: illegal use of special symbols
26: ill-formed expression
27: not enough operands
28: Ie-relative to absolutes unrelocatable
29: constant overflow
30: illegal decimal constant
31: illegal octal constant
32: illegal binary constant
33: invalid key word
34: unmatched macro definition directive
35: include files may not be nested

A-45

Appendix F

36: unexpected end of input
37: • INCLUDE not allowed in macros
38: label expected
39: expected local label
40: local label stack overflow
41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count
44: no local labels in .ASECT
45: expected key word
46 : string expected
47: I/O - bad block, parity error (CRC)
48: I/O - illegal unit number
49: I/O - illegal operation on unit
50: I/O - undefined hardware error
51: I/O - lllli t no longer on-line
52: I/O - file no longer in directory
53: I/O - illegal file name
54: I/O - no room on disk
55: I/O - no such unit on-line
56: I/O - no such file on volume
57: I/O - duplicate file
58: I/O - attempted open of open file
59: I/O - attempted access of closed file
60: I/O - bad format in real or integer
61: I/O - ring buffer overflow
62: I/O - write to write-protected disk
63: I/O - illegal block number
64: I/O - illegal buffer address
65: nested macro definitions not allowed
66: . = I or . <> . expected
67: may not equate to undefined labels
68: .ABSOLUTE must appear before 1st proc
69: .PROC or .FUNC expected
70: too many procedures
71: only absolute expressions in .ASECT
72: must be label expression
73: no operands allowed in .ASECT
74: offset not word-aligned

A-46

75: 1£ not word-aligned
76: immediate operand expected
77: invalid register list entry
78: operand must be indexed
79: invalid index register
80: no offset allowed
81: indirect not allowed
82: invalid offset register
83: invalid offset
84: immediate not allowed
85: registers are incompatible

A-47

Appendix F

APPENDIX G
8080 SYNTAX ERRORS

1: undefined label
2: operand out of range
3: must have procedure name
4: number of parameters expected
5: extra symbols on source line
6: input line over 80 characters
7: unmatched conditional assembly directive
8: must be declared in .ASFCT before used
9: identifier previously declared

10: improper format
11: illegal character in text
12: must .EQU before use if not to a label
13: macro identifier expected
14: code file too large
15: backwards .ORG not allowed
16: identifier expected
17: constant expected
18: invalid structure
19: extra special symbol
20: branch too far
21: LC-relative to externals not allowed
22: illegal macro parameter index
23: illegal macro parameter
24: operand not absolute
25: illegal use of special symbols
26: ill-formed expression
27: not enough operands
28: LC-relative to absolutes unrelocatable
29: constant overflow
30: illegal decimal constant
31: illegal octal constant
32: illegal binary constant
33: invalid key word
34: unmatched macro definition directive
35: include files may not be nested

A-48

Appendix G

36: unexpected end of input
37: •INCLUDE not allowed in rmcros
38: label expected
39: expected local label
40: local label stack overflow
41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count
44: no local labels in .ASECT
45: expected key word
46: string expected
47: I/O - bad block, parity error (CRe)
48: I/O - illegal unit number
49: I/O - illegal operation on unit
50: I/O - undefined hardware error
51: I/O - unit no longer on-line
52: I/O - file no longer in directory
53: I/O - illegal file name
54: I/O - no room on disk
55: I/O - no such unit on-line
56: I/O - no such file on volume
57: I/O - duplicate file
58: I/O - attempted open of open file
59: I/O - attempted access of closed file
60: I/O - bad format in real or integer
61: I/O - ring buffer overflow
62: I/O - write to write-protected disk
63: I/O - illegal block number
64: I/O - illegal buffer address
65: nested macro definitions not allowed
66: . =' or . <>. expected
67: may not equate to undefined labels
68: .ABSOLUTE must appear before 1st proc
69: •PROC or •FUNC expected
70 : too many procedures
71: only absolute expressions in .ASECT
72: must be label expression
73: no operands allowed in .ASECT
74: offset not word-aligned

A-49

Appendix G

75: LC not word-aligned
76 : invalid operand
77: comma expected

A-50

APPENDIX H
9900 SYNTAX ERRORS

1: undefined label
2: operand out of range
3: must have procedure name
4: number of parameters expected
5: extra symbols on source line
6: input line over 80 characters
7: unmatched conditional assembly directive
8: must be declared in .ASECT before used
9: identifier previously declared

10: improper format
11: illegal character in text
12: must .EQU before use if not to a label
13: macro identifier expected
14: code file too large
15: backwards .ORG not allowed
16: identifier expected
17: constant expected
18: invalid structure
19: extra special symbol
20 : branch too far
21: LC-relative to externals not allowed
22: illegal macro parameter index
23: illegal macro parameter
24: operand not absolute
25: illegal use of special symbols
26: ill-formed expression
27: not enough operands
28: LC-relative to absolutes unrelocatable
29: constant overflow
30: illegal decimal constant
31: illegal octal constant
32: illegal binary constant
33: invalid key word
34: unmatched macro definition directive
35: include files may not be nested

A-51

Appendix H

36: unexpected end of input
37 : • INCLUDE not allowed in macros
38: label expected
39: expected local label
40: local label stack overflow
41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count
44: no local labels in .ASECT
45: expected key word
46: string expected
47: I/O - bad block, parity error (eRe)
48: I/O - illegal unit number
49: I/O - illegal operation on unit
50: I/O - undefined hardware error
51: I/O - unit no longer on-line
52: I/O - file no longer in directory
53: I/O - illegal file name
54: I/O - no room on disk
55: I/O - no such unit on-line
56: I/O - no such file on volume
57: I/O - duplicate file
58: I/O - attempted open of open file
59: I/O - attempted access of closed file
60: I/O - bad format in real or integer
61: I/O - ring buffer overflow
62: I/O - write to write-protected disk
63: I/O - illegal block number
64: I/O - illegal buffer address
65: nested macro definitions not allowed
66: '=' or . <> ' expected
67: may not equate to undefined labels
68: .ABSOLUTE must appear before 1st proc
69 : •PROC or •FUNC expected
70: too many procedures
71: only absolute expressions in .ASECT
72: must be label expression
73: no operands allowed in .ASECT
74: offset not word-aligned

A-52

75: 1£ not word-aligned
76: illegal immediate operand
77 : index must be WR
78: close paren ')' expected
79: indirect & autoincr must be WR
80: autoincr must be WR indirect
81: corrma ',' expected
R2: no operand allowed
83: illegal map file
84: WR expected

A-53

Appendix H

APPENDIX I
LSI-Il/PDP-II SYNTAX ERRORS

1: undefined label
2: operand out of range
3: must have procedure name
4: number of parameters expected
5: extra symbols on source line
6: input line over 80 characters
7: unmatched conditional assembly directive
8: must he declared in .ASF£T before used
9: identifier previously declared

10: improper format
11: illegal character in text
12: must .EQU before use if not to a label
13: macro identifier expected
14: code file too large
15: backwards .ORG not allowed
16: identifier expected
17: constant expected
18: invalid structure
19: extra special symbol
20: branch too far
21: LC-relative to externals not allowed
22: illegal macro parameter index
23: illegal macro parameter
24: operand not absolute
25: illegal use of special symbols
26: ill-formed expression
27: not enough operands
28: LC-relative to absolutes unrelocatable
29: constant overflow
30: illegal decimal constant
31: illegal octal cons"tant
32: illegal binary constant
33: invalid key word
34: unmatched macro definition directive
35: include files may not be nested

A-54

Appendix I

36: unexpected end of input
37: .INCLUDE not allowed in macros
3~: label expected
39: expected local label
40: local label stack overflow
41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count
44: no local labels in .ASECT
45: expected key word
46: string expected
47: I/O - bad block, parity error (CRe)
48: I/O - illegal unit number
49: I/O - illegal operation on unit
50: I/O - undefined hardware error
51 : I/O - unit no longer on-line
52: I/O - file no longer in directory
53: I/O - illegal file name
54: I/O - no room on disk
55: I/O - no such lmiton-line
56: I/O - no such file on volume
57: I/O - duplicate file
58: I/O - attempted open of open file
59: I/O - attempted access of closed file
60: I/O - bad format in real or integer
61: I/O - ring buffer overflow
62: I/O - write to write-protected disk
63: I/O - illegal block number
64: I/O - illegal buffer address
65: nested macro definitions not allowed
66: . =' or . <>. expected
67: may not equate to lilldefined labels
68: .ABSOLUTE must appear before 1st proc
69: .PROC or .FUNC expected
70 : too many procedures
71: only absolute expressions in .ASECT
72: must be label expression
73: no operands allowed in .ASECT
74: offset not word-aligned

A-55

Appendix I

75: LC not word-aligned
76: close paren I) I expected
77: register expected
78: too many special symbols
79: unrecognizable operand
80: register reference only
81: first operand must be register
82: corrma ',' expected
83: unimplemented instruction
84: must branch backwards to label

A-56

APPENDIX J
Z8 SYNTAX ERRORS

1: undefined label
2: operand out of range
3: must have procedure name
4: number of parameters expected
5: extra symbols on source line
6: input line over 80 characters
7: unmatched conditional assembly directive
8: must be declared in .ASECT before used
9: identifier previously declared

10 : improper format
11: invalid radix
12: must .EQU before use if not to a label
13: macro identifier expected
14: code file too large
15: backwards .ORG not allowed
16: identifier expected
17: constant expected
18: invalid structure
19: extra special symbol
20 : branch too far
21: LC-relative to externals not allowed
22: illegal macro parameter index
23: illegal macro parameter
24: operand not absolute
25: illegal use of special symbols
26: ill-formed expression
27: not enough operands
28: LC-relative to absolutes unrelocatable
29: constant overflow
30: illegal decimal constant
31: illegal octal constant
32: illegal binary constant
33: invalid key word
34: unmatched macro definition directive
35: include files may not be nested

A-57

Appendix J

36: unexpected end of input
37: • INCLUDE not allowed in macros
38: label expected
39: expected local label
40: local label stack overflow
41: string constants must he on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count
44: no local labels in .ASECT
45 : expected key word
46: string expected
47: I/O - bad block, parity error (CRC)
48: I/O - illegal unit number
49: I/O - illegal operation on unit
50: I/O - undefined hardware error
51: I/O - unit no longer on-line
52: I/O - file no longer in directory
53: I/O - illegal file name
54: I/O - no room on disk
55: I/O - no such unit on-line
56: I/O - no such file on volume
57: I/O - duplicate file
58: I/O - attempted open of open file
59: I/O - attempted access of closed file
60: I/O - bad format in real or integer
61: I/O - ring buffer overflow
62: I/O - write to write-protected disk
63: I/O - illegal block number
64: I/O - illegal buffer address
65: nested macro definitions not allowed
66: . '=' or . <> . expected
67: may not equate to undefined labels
68: .ABSOLUTE must appear before 1st proc
69: .PROC or .FUNC expected
70 : too many procedures
71: only absolute expressions in .ASECT
72: only labels equated to .DEFs
73: no operands allowed in .ASECT
74: offset not word-aligned

A-58

75: LC not word-aligned
76: too many symbols
77: operand expected
78: bad data value
79: ")" expected
80: bad operand type
81: odd register
82: unknown instruction
83: working register expected
84: indirect or register expected
85 : condition code expected

A-59

Appendix J

APPENDIX K
Z80 SYNTAX ERRORS

1: undefined label
2: operand out of range
3: must have procedure name
4: number of parameters expected
5: extra symbols on source line
6: input line over 80 characters
7: unmatched conditional assembly directive
8: must be declared in .ASECT before used
9: identifier previously declared

10: improper format
11: illegal character in text
12: must .EQU before use if not to a label
13: macro identifier expected
14: code file too large
15: backwards .ORG not allowed
16: identifier expected
17: constant expected
18: invalid structure
19: extra special symbol
20: branch too far
21: LC-relative to externals not allowed
22: illegal macro parameter index
23: illegal macro parameter
24: operand not absolute
25: illegal use of special symbols
26: bill-formed expression
27: not enough operands
28: I_C-relative to absolutes unrelocatable
29: constant overflow
30: illegal decimal constant
31: illegal octal constant
32: illegal binary constant
33: invalid key word
34: unmatched macro definition directive
35: include files may not be nested

A-60

Appendix K

36: unexpected end of input
37: • INCLUDE not allowed in macros
38: label expected
39: expected local label
40: local label stack overflow
41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count
44: no local labels in .ASECT
45: expected key word
46: string expected
47: I/O - bad block, parity error (CRC)
48: I/O - illegal unit number
49: I/O - illegal operation on unit
50: I/O - undefined hardware error
51: I/O - unit no longer on-line
52: I/O - file no longer in directory
53: I/O - illegal file name
54: I/O - no room on disk
55: I/O - no such unit on-line
56: I/O - no such file on volume
57: I/O - duplicate file
58: I/O - attempted open of open file
59: I/O - attempted access of closed file
60: I/O - bad format in real or integer
61: I/O - ring buffer overflow
62: I/O - write to write-protected disk
63: I/O - illegal block number
64: I/O - illegal buffer address
65: nested macro definitions not allowed
66: . =' or . <> . expected
67: may not equate to undefined labels
68: .ABSOLUTE must appear before 1st proc
69: .PROC or .FUNC expected
70: too many procedures
71: only absolute expressions in .ASECT
72: must be label expression
73: no operands allowed in .ASECT
74: offset not word-aligned

A-61

Appendix K

75: LC not word-aligned
76: incorrect operand format
77: close paren ')' expected
78: corrrna ',' expected
79: plus '+' expected
80: open paren '(' expected
81: stack pointer 'SP' expected
82: 'HL' expected
83: illegal 'cc' condition code
84: register 'e' expected
85: register expected 'r'
86: register 'A' expected

A-62

APPENDIX L
8086/88/87 SYNTAX ERRORS

1: undefined label
2: operand out of range
3: must have procedure name
4: number of parameters expected
5: extra symbols on source line
6: input line over 80 characters
7: unmatched conditional assembly

directive
8: must be declared in .ASECT before

used
9: identifier previously declared

10: improper format
11: illegal character in text
12: must .EQU before use if not to a label
13: macro identifier expected
14: code file too large
15: backwards .ORG not allowed
16: identifier expected
17: constant expected
18: invalid structure
19: extra special symbol
20 : branch too far
21: LC-relative to externals not allowed
22: illegal macro parameter index
23: illegal macro parameter
24: operand not absolute
25: illegal use of special symbols
26: ill-formed expression
27 : not enough operands
28: LC-realtive to absolutes

unrelocatable
29: constant overflow
30: illegal decimal constant
31: illegal octal constant
32: illegal binary constant

A-63

Appendix L

33: invalid key word
34: unmatched macro definition

directive
35: include files may not be nested
36: unexpected end of input
37: . INCLUDE not allowed in macros
38: label expected
39: expected local label
40: local label stack overflow
41: string constants must be on

single line
42: string constants exceeds RO

characters
43: cannot handle this relocate count
44: no local labels in .ASECT
45: expected key word
46: string expected
47: I/O - bad block, parity

error (CRC)
48: I/O - illegal uni t number
49: I/O - illegal operation

on unit
50: I/O - undefined hardware

error
51: I/O - unit no longer

on-line
52: I/O - file no longer in

directory
53: I/O illegal file name
54: I/O no r(X)ffi on disk
55: I/O no such lmiton-line
56: I/O no such file on volume
57: I/O duplicate file
58: I/O attempted open of open

file
59: I/O attempted access of closed file
60: I/O bad format in real or integer
61: I/O ring buffer overflow
62: I/O write to write-protected disk

A-64

Appendix L

63: I/O - illegal block number
64: I/O - illegal buffer address
65: nested macro definitions not allowed
66: '=' or '<>' expected
67: may not equate to undefined labels
68: .ABSOLUTE must appear before first proc
69: . PROC or . FUNC expected
70: to many procedures (more than 10)
71: only absolute expressions in .ASECT
72: must be label expression
73: no operands allowed in .ASErT
74: offset not word-aligned
75: LC not word-aligned
76: had label, open parenthesis then

illegality
77: expected absolute expression
7R: both operands cannot be a seg register
79: illegal pair of index registers
80: have to use BX, BP, SI or Dr
81: illegal constant as first operand
82: the first operand is needed
83 : the second operand is needed
84: expected comma before second

operand
85: registers stand-alone except in

indirect
86: only two registers per operand
R7: expected label or absolute
89: close parenthesis expected
90 : cannot IDP CS
91: cannot have xchg r8 with r16
92: segment registers not allowed
93: ESC external operand on left must

be constant<64
94: only one of operands can have

segment override
95: right operand must be a memory

location

A-65

Appendix L

96: left operand must be a 16 bit
register

97: left operand must be memory or
register alone

98: operand cannot be a segment or
irrmediate

99: count must be 1 or in CL
100: a byte constant operand is

required
101: operand must use () or be a

label
102: LOCK followed by something

illegal
103: REP precedes only string

operations
104: not implemented
105: expected a label
lOR:
107: open parenthesis expected
108: expected register alone as right

operand
109: segovpre then regalone, that's

illegal
110: only one operand allowed
111: operands are AL,op2 for byte

MUL, etc.
112: SP can only be used with the SS

segment
113: MOVBIM only for immediate to

memory
114: BlMs must be immediate bytes to

memory
115: MOV immediate to Segment Register

not allowed
116: Segment Register expected
117: (8087) invalid two-operand format
118: (8087) invalid single operand

format
119: (8087) inproper operand field

A-R6

Appendix L

120: (8087) instruction has no operands
121: no override of ES on string

destination
122: intersegment jump or call needs 2

constant or external operands
123: I/O port must be immediate byte

or DX
124: I/O source-destination register

must be AL or AX
12~: prefix mist be on same line as code
126: register expected as first token

after '(I

A-f37

APPENDIX M
68000 SYNTAX ERRORS

1: undefined label
2: operand out of range
3 : must have procedure name
4: number of parameters expected
5: extra symbols on source line
6: input line over 80 characters
7: unmatched conditional assembly directive
8: must be declared in .ASECT before used
9: identifier previously declared

10: improper format
11: illegal character in text
12: must .EQU before use if not to a label
13: macro identifier expected
14: code file too large
15: backwards .ORG not allowed
16: identifier expected
17: constant expected
18: invalid structure
19: extra special symbol
20: branch too far
21: LC-relative to externals not allowed
22: illegal macro parameter index
23: illegal macro parameter
24: operand not absolute
25: illegal use of special symbols
26: ill-formed expression
27: not enough operands
28: I£-relative to absolutes unrelocatable
29: constant overflow
30: illegal decimal constant
31: illegal octal constant
32: illegal binary constant
33: invalid key word
34: unmatched macro definition directive
35: include files may not he nested

A-68

Appendix M

36: unexpected end of input
37: . INCLUDE not allowed in rmcros
38: label expected
39: expected local label
40: local label stack overflow
41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count
44: no local labels in .ASECT
45: expected key word
46: string expected
47: I/O - bad block, parity error (CRC)
48: I/O - illegal unit number
49: I/O - illegal operation on unit
50: I/O - undefined hardware error
51: I/O - unit no longer on-line
52: I/O - file no longer in directory
53: I/O - illegal file name
54: I/O - no room on disk
55: I/O - no such unit on-line
56: I/O - no such file on volume
57: I/O - duplicate file
58: I/O - attempted open of open file
59: I/O - attempted access of closed file
60: I/O - bad format in real or integer
61: I/O - ring buffer overflow
62: I/O - write to write-protected disk
63: I/O - illegal block number
64: I/O - illegal buffer address
65: nested rmcro ~efinitions not allowed
66: '=' or '<>. expected
67: may not equate to undefined labels
68: .ABSOLUTE must appear before 1st proc
69: .PROC or .FUNC expected
70: too many procedures
71: only absolute expressions in .ASECT
72: must be label expression
73: no operands allowed in .ASECT
74: offset not word-aligned

A-69

Appendix M

75: Ie not word-aligned
76: unrecognizable address mode
77: address register expected
78: close paren ')' expected
79: displacement out of range
80: index register expected
81: illegal length qualifier
82: illegal source address mode
83: illegal destination address mode
84: corrma r,' expected
85: length qualifier required
86: length qualifier not allowed
87: data register expected
88: label expected
89: illegal register list
90: immediate operand expected

A-70

APPENDIX N
NIL POINTER VALUES

The following table lists the value designated
as NIL for each processor. A NIL pointer (a
pointer variable which is assigned the value
NIL) is uninitialized or points to nothing.

280
8080
6502
6809
6ROOO
HP-87
PDP-II
9900
8086

0001
0001
0000
0000
0000
0000
FOOl
0000
0000

A-7l

INDEX

-6-

6500 •.
6800.
68000.
6809 ..

2-7
2-9

.2-2.9
2-14

-8-

8080 •.
8086 ..

2-11
2-18

-9-

9900 . 2-1?

-A-

1-52,

1-56,

1-23,
1-92,

• AND

•ABSOLUTE ..•....
Absolute Sections.
ALe. • •

Ari thmetic Operators.
.ASCII. .
.ASCIILIST.
. ASECT .
Assembled Listing.
Assembler Directives ••••

conditional assembly. .

1-85
. . . . • 1-22

1-23
. ALIGN•....................... 1-39

1-14
1-13

1-33
. ...•. 1-40

1-57
1-98
1-25
1-59

1-1

. 2-7

. 2-9
2-29
2-14
2-11
2-18
2-12

Index

external reference ...
host corrmunication. . .
listing control
macro definitions •........•. 1-53,
miscellaneous. • . • • . .
procedure-delimiting. • ••.
program delimi ters
program linkage.

Assemblers
65 00. .
6800. .
680 00 .
6809.
8080.
8086 ...
9900.

1-73
1-71
1-39
l-R2
1-55
1-28
1-74
1-47

LSI-11•...•..•......... 2-4
PDP-I! 2-4
Z8 2-16
Z80 2-5

Assembly language••.•.••. 1-3
Assembly Routines. • 1-21
Assembly Time Constants. • 1-11

-B-

Binary Integer Constants•.......
.B~ 1-23,
.BYTE 1-23,
Byte Organization•...

1-2

. 1-8
1-35
1-34
• 1-5

Index

-c-
Character Constants. . ..•....... 1-10
Character Set.................... 1-6
Character Strings 1-8
Comment Field •..............•.•.. 1-20
Compress. • •. 1-85
Conditional Assembly.... •. 1-59
Condi tional Assembly Directives 1-52
.CONDLIST. . . •• 1-41
.CONST •.............•..... 1-47, 1-72

-D-

Data and Constant Definitions. . • 1-33
Decimal Integer C..onstants. • . . • .. 1-9
.DEF •................... 1-51, 1-73
Defaul t Integer r..onstants 1-10

-E-

•ElSE. • • • • • • • • •
· END.
·~ .·~ .

1-59
1-32
1-59
1-62
1-37
1-99

1-90
A-37
1-11
1-73

· 1-53,
1-23,
· 1-52,
· 1-54,

• EQU • ••••••••••••••••••• 1-23,
.. 1-94,Error Messages.

8086. ERRORS .•.•....
Example 8086 Routines. . .•..
Expressions.•.
External Reference Directives. • • . .

1-3

Index

-F-

8087. FOPS •.••.••
.FUNC ...•••.••••• 1-21,

-H-

Hexadecimal Integer Constants.
Host Communication Directives.

-1-

1-90
1-28, 1-30, 1-70

. 1-9
1-72

Identifiers •.••.
• IF. • • • • • 1-52,
• INCLUDE ..•.•..•.•...•..••.•..
· I NTER.P••..............•......

-L-

. 1-6
1-59
1-55
1-50

Label. . • . • . • • . .
Label Field .•..••

1-11-1-17
. 1-17

Linking •.••..•••.•.•.••.••.•.. 1-68
Linking and Program Modules. • .. 1-75
Linking Restrictions. . • • . • • . . • • . • .• 1-12
Linking to Pascal .•••••••••••....• 1-83
.LIST ..•.••..••••••...•.•. 1-23, 1-44
Listing •••••...••...••.•••• 1-92, 1-98
Listing Control Directives. • . • • . . . • . . 1-39
Location C-Ounter Modification•.... 1-38
Logical Operators. . • • • . . • . . • . • . . •. 1-14

%. • • • •• 1-14
&. 1-14
* 1-14
+. 1-14

1-14

1-4

/. .
II·

=.

I .

Index

1-14
.• 1-14

1-14
1-14
1-14
1-14
1-14

J_ISI-l1 2-4

-11.-

•MACRO ••••••
Macro Calls.
Macro Definition Directives ..
Macro Definitions.
Macro Language. . . .
• MACROL 1ST ••••••
Miscellaneous Directives •.
• MOD. . • •

-N-

1-53, 1-62
• . . • . 1-63

1-53
1-62
1-61

.1-45
. 1-55
1-14

· NOT. •

.NARROWPAGE.
•NOASCIILIST •••
• NOCONDLI ST ••
•NOLIST ••••
.Na.fACROLIST.
.NOPATCHLIST.
• NOSYMT ABLE ••••

1-5

1-23,

1-43
1-41

1-42
1-45
1-46
1-47

1-42
1-14

Index

-0-

Object ('Dde Format. • •••.•..•... 1-5
Octal Integer Constants ••.••.••••••. 1-10
Opcode Field.................... 1-20
8086.0R::ODES .•.••••••••••....••.. 1-90
Operand Field •••••••••..••••••••• 1-20
.OR. 1-14
.ORG •••••.••••••••••• 1-23, 1-38, 1-85

-p-

.PAGE. • • • . • . • . • . •••••••... 1-44
• PAGEHEIGHT •••••.•....••.••••.• 1-43
Parameter Passing. • • • . . . • . . 1-63
Parameter passing. • • • • • . . . • . • • . . • • A-37
Parameter Passing ('Dnventions. • . • . . • . . 1-78
•PATCHLIST •••..••••••..•... 1-46, 1-100
PDP-l1 2-4
•PRIVATE ••••••••••.......•. 1-49, 1-73
.PROC ••••••.••••• 1-21, 1-28, 1-29, 1-70
Procedure-Delimi ting Directives ••••.••• 1-28
Program Identifier Directives ••••••••. 1-74
Program Linkage Directives. • . • . • • • . •• 1-47
Program Linking Directives. • • • • • • . • . . 1-71
Program Linking & Relocation .•..••.•.. 1-68
• PS ECT • • • . • . . • . • . . • • 1-57
•PUBLIC•••••.••..•..•.. 1-48, 1-72

-R-

• RADIX •••••••••
.REF 1-51,
•RELFUNC. • . . 1-21, 1-28, 1-32,
.RELPROC .••••••••.. 1-21, 1-28, 1-31,

1-6

1-58
1-73
1-70
1-70

Index

-8-

Table 1-102

Sample 8086
Stand-Alone
Symbol

Routines ...
Applications ..

•• A-37
• •• 1-84

-T-

.TITLE •••••••••

-v-
Value Parameters ...
Variable Parameters •.

. ...•..•••• 1-40

1-80
1-79

-w-
•WORD. • • • • • • • • • • • ••••• 1-23, 1-36
Word Organization •......••••••.•••. 1-5

-x-
• XOR •••••••••••

Z8 ••
Z80.

-7.

1-7

1-14

2-16
2-5

	Cover
	Preface
	Table of Contents
	Chapter 1: The Assembler
	Introduction
	General Information
	Assembler Directives
	Conditional Assembly
	Macro Language
	Program Linking & Relocation
	Operation of the Assembler
	Assembler Output

	Chapter 2: Processor-Specific Information
	Introduction
	LSI-11/PDP-11 Assembler
	Z80 Assembler
	6502 Assembler
	6800 Assembler
	8080 Assembler
	9900 Assembler
	6809 Assembler
	Z8 Assembler
	8086/8088/8087 Assembler
	68000 Assembler

	Appendices
	A: The Linker
	B: The Compress Utility
	C: Coding Examples
	D: 6502 Syntax Errors
	E: 6800 Syntax Errors
	F: 6809 Syntax Errors
	G: 8080 Syntax Errors
	H: 9900 Syntax Errors
	I: LSI-11/PDP-11 Syntax Errors
	J: Z8 Syntax Errors
	K: Z80 Syntax Errors
	L: 8086/8088/8087 Syntax Errors
	M: 68000 Syntax Errors
	N: NIL Pointer Values

	Index

