COMPUTER

Copyright 1983 by SofTech Microsystems, Inc.

All rights reserved. No part of this work may
be reproduced in any form or by any means or
used to make a derivative work (such as a
translation, transformation, or adaptation)
without the written permission of SofTech
Microsystems, Inc.

p-System is a trademark of SofTech Microsystems,
Inc.

UCSD and UCSD Pascal are registered trademarks
of the Regents of the University of California.
Use thereof in conjunction with any goods or
services is authorized by specific license only,
and any unauthorized use is contrary to the laws
of the State of California.

Printed in the United States of America.

Disclaimer

This document and the software it describes are
subject to change without notice. No warranty
expressed or implied covers their use. Neither
the manufacturer nor the seller is responsible
or liable for any consequences of their use.

PREFACE

Preface

This manual describes the p-System Assembler.
The assemblers which accompany this manual
enable you to produce assembly language code for
any one of the following processors:

1.SI-11/PDP-11
780

6502

6800

8080

9900

6809

78

68000
8086,/8087,/8088

The assembly language programming details for
these processors isn't covered in this manual.
You should use a manual which describes the
processor you are programming for along with
this manual. (See Chapter 2.)

You can use the p-System to develop assembly
language programs to provide:

1. Assembly language procedures to run under
control of a host program; or

]

. Stand-alone assembly language programs to use
outside of the operating system's
environment.

Preface

The assemblers, in conjunction with the system
linker and some support programs, give you these
capabilities.

You should use this reference manual in
conjunction with the processor software manual
that supports your machine. For information
concerning differences from the processor's
standard software syntax, refer to Chapter 2.

This manual is organized as follows. Chapter 1,
"The Assembler," presents detailed information
which applies to the assembler in general.
Chapter 2, ‘"Processor-Specific Information,"
provides information that is specific to each
processor with a section for each assembler.

Appendix A describes the linker which combines
separately assembled code files and can also
link a high-level host program with assembled
routines.

Appendix B covers the Compress utility. This
utility allows you to produce a relocatable or
absolute assembled object code file, enabling it
to be run outside of the p-System environment.

Appendix C contains some typical 8086 routines.
These examples demonstrate how to interface with
Pascal program from assembly language.

vi

Preface

Appendices D through M 1lists the assembler
syntax errors for each processor.

Appendix N shows the value of NIL used by each
processor.

vii

TABLE
OF

CONTENTS

THE ASSEMBLER. . . . « . . TR EEE Y 1-3
INTRODUCTION. o wiw s e ow s e 1-3
Assembly lLanguage Definition. 1-3
Assembly language Applications. 14
GENERAL INFORMATION. . ¢ ¢ v ¢ o ¢ o o « & 1-5
Object Code Format. . « « ¢ ¢« ¢ ¢ & &« « & 1-5
Byte Organization. . . . « + « « 1-5
Word Organization. . «+ « ¢ ¢« ¢ &« ¢« o & & 1-5
Source Code Format. . « + « & v ¢« ¢ o o . 1-6
Character Set. « « ¢« v ¢ ¢ ¢« & ¢ ¢« o o & 1-6
Identifiers. . . « « « « . . «m 5w u 1-6

Predefined Symbols and Identifiers. 1-7
Character StringS. « « « « ¢« ¢ ¢« « « « & 1-8

Table of Contents

Constants. « « « « « D A . 1-8
Binary Integer Constants. 1-8
Decimal Integer Constants. 1-9
Hexadecimal Integer Constants. . . . 1-9
Octal Integer Constants. 1-10
Default Integer Constants. 1-10
Character Constants. . . « « 1-10
Assembly Time Constants. 1-11

Expressions. . « ¢« ¢« ¢« ¢« ¢ ¢ v ¢ 0o 0. . 1-11

Relocatable and Absolute. 1-12
ILinking and Restrictions. 1-12
Arithmetic & Logical Operators. . . 1-13
Subexpression Grouping. . « « « « « & 1-15
ExampleS . ¢ ¢ v v v ¢ 6 o 4 v a6 s 0 1-16
Source Statement Format. 1-17
Label Field. « ¢« ¢ ¢« v ¢ v ¢« ¢ ¢ o o o & 1-17
Standard Label Usage. « « « o + « ~ & 1-17
local Label Usage. . . « « « « ¢ . . 1-18
Opcode Field. « + ¢« ¢ ¢« ¢ v o ¢ ¢ s o & 1-20
Operand Field. « « ¢« v ¢« ¢ ¢ o o s o o & 1-20
Comment Field. . . « ¢« ¢« ¢ ¢ ¢« v o o s & 1-20
Source File Format. . . «+ « « ¢ ¢« . .« . 1-21
Assembly Routines. . . . « 1-21
Global Declarations. . . « « « &« « « & 1-22

Absolute SectionS. « ¢« ¢« ¢« ¢« o o o o 1-22

Table of Contents

ASSEMBLER DIRECTIVES. . . v v v v v o o » 1-25
Procedure-Delimiting Directives. . . . 1-28
Data and Constant Definitions. 1-33
Location Counter Modification. 1-38
Listing Control Directives. 1-39

Program lLinkage Directives. . . « « . « 1-47
Conditional Assembly Directives. . . . 1-52
Macro Definition Directives. 1-53

Miscellaneous Directives. 1-55

CONDITIONAL: ASSEMBILY . « o &« ¢ ¢ « « o « & 1-59
Conditional Expressions. 1-60
MACRO LANGUAGE . + ¢ ¢« 4 ¢ 4 ¢ « s o o o &« 1-61
Macro Definitions. . « « « « ¢ ¢ v + « . 1-62
Macro CallS.e ¢ ¢ v v « v o o o o o o o @ 1-63
Parameter Passing. . « « « o v ¢ ¢ ¢ o & 1-63
Scope of labels in Macros. 1-65

local lLabels as Macro Parameters. . 1-66

PROGRAM LINKING & RELOCATION. 1-68
Program Linking Directives. 1-71
Host Communication Directives. . . . 1-72
External Reference Directives. . . . 1-73
Program Identifier Directives. . . . 1-74
Linking Program Modules. 1-75
Linking with a Pascal Program. . . . 1-75
Parameter Passing Conventions. . . 1-78
Variable Parameters. 1279

Table of Contents

Value Parameters. . . . « « « « « & 1-80
String and Byte Array Parameters. . 1-81
Example of Linking to Pascal. 1-83
Stand-Alone Applications. 1-84
AssSembling . « « o o ¢ o« o ¢ o o o o« o 1-85

Executing Absolute Code Files. . . 1-86

OPERATION OF THE ASSEMBLER. « « « « . . 1-89
Support Files. ¢« ¢ « v ¢ ¢ ¢« o o o« ¢ s 1-89
Setting Up Input And Output Files. . 1-90
Responses to Listing Prompt. 1-91
Output ModeS . « ¢ o o o o ¢ o o ¢« s o o o 1-93
Responses to Error Prompt. 1-94

Miscellany .« « o« o« o o o s o o o o & & 1-95

ASSEMBLER OUTPUT . & ¢ & 4 o o o o o o & 1-97
Source Listing. « « ¢ « ¢« ¢« ¢« « ¢ ¢ ¢ .. 1-98
Error MessSageS . « « v « ¢ ¢ o o o o o o & 1-99
Code Listing. . « ¢ v v v v v ¢« ¢« s o o 1-99

Forward References. 1-100
External References. 1-101
Multiple Code Tdnes. « « « ¢« « « o . 1-101
Symbol Table. « ¢« ¢ ¢« ¢« ¢ ¢ ¢ o« o o o @ 1-102

Example Assembled Listing. 1-103

Table of Contents

PROCESSOR-SPECIFIC INFORMATION. 2-3
INTRODUCTION. . « + . . . s wowme ow o w . . 2-3
LSI-11/PDP-11 ASSEMBLER. . « ¢ ¢ ¢ « « « . 2-4

Syntax Conventions. . . .« « . « 2-4
Sharing PME Resources . « « « « o« o o « & 2-4
Memory Organization. e es 0. 24

Default Constant and List Radices. . . 2-4

Z80 ASSEMBLER ¢ 4 & ¢ o« o ¢ o o « o o o o o &« 2-5
Syntax ConventionS. . « « ¢ o ¢ o« « o & & 2-5
Sharing PME Resources. e s s e 255
Memory Organization. . . « « « « « « « & 2-5

Default Constant and List Radices. . . 2-6

6502 ASSEMBLER . v ¢ ¢ ¢ ¢ ¢ v ¢ o o o o o 2-7
Syntax ConventionS. . . « « « ¢ ¢« « « + & 2-7
Sharing PME Resources. « « « « « « + « & 2-8
Memory Organization.« . .« .« « « . 2-8

Default Constant and IList Radices. . . 2-8

6800 ASSEMBLER . & v ¢ ¢ o ¢ o o o o o s o & 2-9
Syntax Conventions. . « « « « ¢ ¢« « « « 2-9
Sharing PME Resources. . . « « « ¢« « « . 2-10
Memory Organization. . . .« . . « +« « « . 2-10

Default Constant and List Radices. . 2-10

Table of Contents

8080 ASSEMBLER . ¢ v v ¢ 4 ¢ ¢ o o o o & & 2-11
Syntax Conventions. . « « « o« ¢« « « « 2-11
Sharing PME ResourceS. . « « v ¢ ¢ « « & 2-11
Memory Organization. . + « « « v« « ¢« o . 2-11

Default Constant and List Radices. . 2-11

9900 ASSEMBLER. « v v v 4 ¢ o ¢ o o o o 2-12
Syntax ConventionS. .« « « « o o o « o « 2-12
Sharing PME Besources . « « « « ¢ o « « & 2-12
Memory Organization. 2-12

Default Constant and IList Radices. . 2-13

68090 ASSEMBLER . & ¢ ¢ ¢ ¢ ¢ v ¢ o o o o & 2-14
Syntax ConventionsS. . « + « « ¢« ¢« « « & 2-14
Sharing PME ResourcesS. . . « « o+ « & + & 2-15
Memory Organization. . . . + « « « « « & 2-15

Default Constant and lList Radices. . 2-15

Z8 ASSEMBLER. ¢+ ¢ v v 4 v o e e 6 o o s o s 2-16
Syntax Conventions. . « « « « « ¢« « o . 2-16
SYNMBOLE o 0 o o © o 2 8 8 226 8 38 s 5 = @ 2-16
Numeric Constants. . . « . . « 2-16
Predefined Constants. 2-16
Sharing PME Resources. . « . . « « « « . 2-17
Memory Organization. 2-17

Default and l.ist Radices. . « ¢« « « « & 2-17

Table of Contents

8086/8088/8087 ASSEMBIER. « « v « « « . 2-18
Syntax Conventions. . . . « . « ¢« . . . 2-18
Sharing PME ResourceS. .« « « « « « « o & 2-24

Calling and Returning. 2-24
Accessing Parameters. 2-25
Register Usage. . « v v ¢« ¢« v ¢ ¢ ¢« « 2-26
Memory Organization. . . « « « ¢« « « « . 2-27

Default Constant and List Radices. . 2-28

68000 ASSEMBLFR. & 4 v ¢ ¢ & o« o o « &« . . 2-29
Syntax Conventions. @ B R % s 2-29
Sharing PME Resources. « « « « « v o« « . 2-31
Memory Organization.« 2-33

Default Constant and lList Radices. . 2-33

APPENDICES . ¢ ¢ ¢ o ¢ ¢ o « ¢ o s o « « a o a s A-1
A: THE LINKER. o 8w ow e o om A-3
B: THE COMPRESS UTILITY. . . . « « « ¢ ¢ . A-7
C: CODING EXAMPLES. e« s e .. A-13
D: 6502 SYNTAX FRRORS. . . « « « ¢ « « & A-39
E: 6800 SYNTAX FRRORS. A-42
F: 6809 SYNTAX FRRORS. A-45
F: 8080 SYNTAX ERRORS. A-48
H: 9900 SYNTAX FRRORS. e v e« A-B1
I: LSI-11/PDP-11 SYNTAX ERRORS. A-54
J: 78 SYNTAX FRRORS. . « « v ¢ ¢ o o . & A-57
K: Z&) SYNTAX FRRORS . ¢« s ¢ ¢ s s ¢« o » +» A-60
L: 8086/88/87 SYNTAX FRRORS. A-63

Table of Contents

M: 68000 SYNTAX FRRORS. A-68
N: NIL POINTER VALUES. . . . « « « « . . A-71

CHAPTER 1

THE ASSEMBLER

The Assembler

INTRODUCTION

This chapter describes the p-System Assembler.
It covers assembler-related concepts, assembler
directives, and assembler operations. Other
topics covered here include:

Linking assembled routines with host
compilation units.

Assembled listings.
Error messages.

Sharing PME Resources.

Assembly lLanguage Definition

An assembly language consists of symbolic
names that can represent machine instructions,
memory addresses, or program data. The main
advantage of assembly language programming
over machine coding is that programs can be
organized in a more readable fashion, making
them easier to understand.

1-3

The Assembler

An assembler translates an assembly language
program, called source code, into a sequence
of machine instructions, called object code.
Assemblers can create either relocatable or
absolute object code. Relocatable code
includes information that allows a loader to
place it in any available area of memory,
while absolute code must be loaded into a
specific area of memory. Symbolic addresses
in programs that are assembled to relocatable
object code are called relocatable addresses.

Assembly Language Applications

Using the p-System, you can develop:

1. Assembly language procedures to be used
under a host program; or

2. Stand-alone assembly language programs for

use 1in a different operating system
environment.

1-4

The Assembler

GENERAJ. INFORMATION

Object Code Format

Byte Organization

A byte consists of eight bits. These bits
may represent eight binary values or a
single character of data. The bits may also
represent a one-byte machine instruction or
a number that is interpreted as either a
signed two's complement number in the range
of -128 to 127 or an unsigned number in the
range of 0 to 255.

Word Organization

A word consists of 16 bits or 2 adjacent
bytes in memory. A word may contain a
one-word machine instruction, any
combination of byte quantities, or a number
that may be interpreted as either a signed
two's complement number in the range of
-32,768 to 32,767 or an unsigned number in
the range of O to 65,535.

The Assembler

Source Code Format

Character Set

Use the following characters to construct
source code:

@ Uppercase and lowercase alphabetic
characters: A through 7, a through z

@ Numerals: O through 9

@ Special symbols: | @ # $ % ~ & * () < >
~[]‘,/;:"'+_'=?

@ Space (' ') character and tab character

Identifiers

Identifiers consist of an alphabetic
character followed by a series of
alphanumeric characters and/or underscore
characters. The underscore character isn't
significant. Only the first 8 characters of
an identifier are significant.

1-6

The Assembler

Use identifiers in:
@ Iabel and constant definitions.

@ Machine instructions, assembler
directives, and macro identifiers.

@ lLabel and constant references.

FormArray

'FORM_ARRAY
SN farmarray. T b ls!
.. all denote the same item. -

Predefined Symbols and Identifiers

Predefined identifiers are reserved by the
assembler as symbolic names for machine
instructions and registers. Don't use
them as names for labels, constants, or
procedures. Also, the dollar sign, "$,"
is predefined to specify the location
counter. When used in an expression, the
dollar sign represents the current value
of the location counter in the program.

The Assembler

Character Strings

Write a character string as a series of
ASCII characters delimited by double quotes.
A string may contain up to 80 characters,
but can't cross source lines. You can embed
a double quote in a character string by
entering it twice; for example, "This
contains ""embedded"" double quotes." The
assembler directive .ASCII requires a
character string for its operand.

Strings also have limited wuses in
expressions.

Constants

Binary Integer Constants

Write a binary integer constant as a
series of bits or binary digits (O through
1) followed by the letter 'T'. The range
of values is O to 1111111111111111, or O
to 11111111, if a byte constant.

ot =
' 010001007
111017

The Assembler

Decimal Integer Constants

Write a decimal integer word constant as a
series of numerals (0 through 9) followed
hy a period. Its range of values is
-32768 to 32767 as a signed two's
complement number. As a byte constant,
its range of values is -128 to 127 as a
signed two's complement number or 0 to 255
as an unsigned number.

001."
1256)
-4096.

Hexadecimal Integer Constants

Write a hexadecimal integer word constant
as a series of up to four significant
hexadecimal numerals (0O through 9, A
through F) followed by the letter 'H'.
The leading numeral of a hexadecimal
constant must be a numeric character. The
range of values is 0 to FFFF. These are
examples of valid hexadecimal constants:

OAH
100H o
OFFFEH ; leading zero is required here

Byte constants possess similar syntax, but
can have at most two significant
hexadecimal numerals, with a range of 0 to
FF.

1-9

The Assembler

Octal Integer Constants

Write an octal integer word constant as a
series of up to six significant octal
numerals (O through 7) followed by the
letter 'Q'. Its range of values is 0 to
177777. Byte constants can have at most
three significant octal numerals, with a
range of 0 to 377.

17
4570
1777760

Default Integer Constants

If you don't follow an integer constant

with 'T', '.', 'H', or 'Q', the integer
will, bhy default, be of a certain type.
This type 1is processor dependent. (See
Chapter 2.)

Character Constants

Character constants are special cases of
character strings; you may use them in
expressions. The maximum length is two
characters for a word constant and one
character for a byte constant. Character
constants are delimited by double quotes.

P
o
i = FI'YAII

1-10

The Assembler

Assembly Time Constants

Write an assembly time constant as an
identifier that the .EQU directive has
assigned a constant value. (Refer to the

section on "Data and Constant
Definitions," presented 1later in this
chapter.) Its value 1is completely

determined at assembly time from the
expression following the directive. You
mist define assembly time constants before
you refer to them.

Expressions

Use expressions as symbolic operands for
machine instructions and assembler
directives. An expression can be:

@ A label, which might refer to a defined
address or an address further down in the
source code (implying that the label is
presently undefined), an externally
referenced address, or an absolute
address.

@ A constant.

@ A series of labels or constants separated
by arithmetic or logical operators.

@ The null expression, which evaluates to a
constant of value O.

1-11

The Assembler

Relocatable and Absolute

An expression containing more than one
label is wvalid, only if the number of
relocatable labels added to the expression
exceeds the number of relocatable labels
subtracted from the expression by zero or
one. The expression result is absolute if
the difference is zero, and relocatable if
the difference is one. Don't use
subexpressions that evaluate to
relocatable quantities as arguments to a
multiplication, division, or 1logical
operation. Also, don't apply unary
operators to relocatable quantities.

In relocatable programs, don't use
absolute expressions as operands of
instructions that require

location-counter-relative address modes.

L.inking and Restrictions

An expression may contain no more than one
externally defined 1label, and its value
must be added to the expression. An
expression containing an external
reference may not contain a
forward-referenced label, and the
relocation sum of any other relocatable
labels in the expression must be equal to
Zero.

1-12

The Assembler

An expression may contain no more than one
forward-referenced identifier. A
forward-referenced identifier is assumed
to be a relocatable label defined further
down in the source code; you must define
any other identifiers before using them in
an expression. Also, don't place an
externally defined label in an expression
containing a forward-referenced label.

Arithmetic & Logical Operators

You may use the following operators in
expressions:

@ Unary operations:
'+' plus
'-'minus (two's complement negation)

'~'logical not (one's complement negatiol

1-13

The Assembler

@ Binary operations:
'+'plus
'—='minus
'“'exclusive or
"*'multiplication
'/'signed integer division (DIV)
'/ /'unsigned integer division (DIV)
'%'unsigned remainder division (MOD)
'| 'pitwise OR
'®&'bitwise AND

@ Use the following operators only with
conditional assembly directives:
'='equal
'<>'not equal

@ Use the following symbols as
alternatives to the single-character
definitions presented above.
Occurrences of these alternative

definitions require at least single
blank characters as delimiters:

OR = '[!
.AND = %!
.NOT = '
XOR = '
MOD = %

1-14

The Assembler

The assembler evaluates expressions from
left-to-right; there 1is no operator
precedence. All operations are performed
on word quantities. Iimit unary operators
to constants and absolute addresses; and
enclose subexpressions that contain
embedded wunary operators with angle
brackets.

Subexpression Grouping

You may use angle brackets ('<' and '>')
in expressions to override the
left-to-right evaluation of operands.
Subexpressions enclosed in angle brackets
are completely evaluated bhefore including
them in the rest of the expression. Angle
brackets are used instead of parentheses
to group expressions. Using parentheses
to group expressions doesn't generate an
error but causes the assembler to
interpret the expression as indirect
addressing mode.

1-15

The Assembler

Examples

In the following examples of wvalid
expressions, the default radix is decimal:

1-16

The Assembler

Source Statement Format

An assembly language source program consists
of source statements that may contain machine
instructions, assembler directives, comments,
or nothing (a blank line). Each source
statement is defined as one line of a text
file.

Label Field

The assembler supports the use of both
standard 1labels and 1local (that 1is,
reusable) labels. Begin the label field in
the left-most character position of each
source line. Macro identifiers and machine
instructions must not appear in the start of
the label field, but assembler directives
and comments may appear there.

Standard Label Usage

A standard label is an identifier placed
in the label field of a source statement.
You may terminate it with an optional
colon character, which isn't used when
referencing the label. Only the first
eight characters of the 1label are
significant; the assembler ignores the
rest. The underscore character isn't
significant.

L BI0S S S e
L3456 ‘.~ 3 referenced as.'L3456'
The _Kind % AR
LONG__label ; last character is ignored

1-17

The Assembler

A standard label is a symbolic name for a
unique address or constant; declare it
only once in a source program. A label is
optional for machine instructions and for
many of the assembler directives. A
source statement consisting of only a
label is a valid statement; it effectively
assigns the current value of the location
counter to the label. This is equivalent
to placing the labhel in the label field of
the next source statement that generates
object code. Labels defined in the label
field of the .EQU directive are assigned
the value of the expression in the operand
field. (See the "Data and Constant
Definitions™ section, presented later in
this chapter.)

Local Label Usage

Local labels allow source statements to be
labeled for other 1instructions to
reference, without taking up storage space
in the symbol table. They can contribute
to the cleanliness of source program
design by allowing nonmnemonic labels to
be created for iterative and decision
constructs to use, thus reserving the use
of mnemonic label names for demarking
conceptually more important sections of
code.

1-18

The Assembler

In local labels, you must place "$" in the
first character position; the remaining
characters must be digits. As in regular
labels, only the first eight digits are
significant. The scope of a local label
is 1limited to the 1lines of source
statements between the declaration of
consecutive standard labels; thus, the
jump to label $4 in the following example
is illegal:

LABEL1 el

L e o ADET T AN ST
$3. - MoV MEM, -AX- - X
aes Je $3. .7 legal

NOP -
: - JINC %4 ; illegal
" LABEL2 et RS
: TRERDCE T AN ST

S % MOV - MEM, AX

You may define up to 21 Ilocal labels
between 2 occurrences of a standard label.
On encountering a standard label, the
assembler purges all existing local label
definitions; hence, all local label names
may be redefined after that point. Don't
use local labels in the label field of the
LEQU directive. (See the "Data and
Constant Definition" section in this
chapter.)

1-19

The Assembler

Opcode Field

Begin the opcode field with the first
nonblank character following the 1label
field; or with the first nonblank character
following the left-most character position
when the label is omitted. Terminate it
with one or more blanks. The opcode field
can contain identifiers of the following
types:

@ Machine instruction.
@ Assembler directive.

@ Macro call.

Operand Field

Begin the operand field with the first
nonblank character following the opcode
field; terminate it with zero or more
blanks. It can contain zero or more
expressions, depending on the requirements
of the preceding opcode.

Comment Field

You can precede the comment field with zero
or more blanks, begin it with a semicolon
(';'), and extend it to the end of the
current source line. The comment field may
contain any printable ASCII characters. It
is listed on assembled listings and has no
other effect on the assembly process.

1-20

The Assembler

Source File Format

You should use the system editor to produce
assembly source files and save them as text
files. You can construct a source file from
the following entities:

@ Assembly routines (procedures and
functions).

@ Global declarations.

Assembly Routines

A source file may contain more than one
assembly routine. In this case, a routine
ends when a routine delimiting directive
occurs (for example, the start of the
following routine). Fach routine in a
source file is a separate entity. It
contains its own relocation information;
and, during 1linking, a host program may
refer to it individually.

Begin assembly routines with a .PROC, .FUNC,
.REI.PROC, or .RELFUNC directive. Terminate
the last routine in the source file with the
.END directive.

At the end of each routine, the assembler's
symbol table is cleared of all but
predefined and globally declared symbols,
and the location counter (IC) is reset to
ZEero.

1-21

any non-code-
generating
operations

code-generating
or non-code generating @
operations and directives

Figure 1-1. Structure of
an Assembled Module

The Assembler

Global Declarations

An assembly routine may not directly access
objects declared in another assembly
routine, even if the routines are assembled
in the same source file; however, sometimes
it's desirable for a set of routines to
share a common group of declarations.
Therefore, the assembler allows global data
declarations.

All subsequent assembly routines may
reference any objects declared before a
.PROC, .FUNC, .RELPROC, or .RELFUNC
directive initially occurs in a source file.
No code may be generated hefore the first
procedure delimiting directive; hence, the
"global" objects are limited to the
noncode—-generating directives (.EQU, .REF,
.DEF, .MACRO, .LIST, etc.).

Absolute Sections

You'll often have to access absolute
addresses in memory, regardless of where an

assembly routine is loaded in memory. For
instance, a program may need to access ROM
routines. Absolute sections allow you to

define 1labels and data space using the
standard syntax and directives; this give
you the added capability of specifying
absolute (nonrelocatable) label addresses,
starting at any location in memory.

1-22

The Assembler

You should initiate absolute sections with
the directive .ASECT (for absolute section)
and terminate them with the directive .PSECT
(for program section, which 1is the default
setting during assembly). When the .ASECT

directive 1s encountered, the absolute
section location counter (AIC) becomes the
current location counter. Use the .ORG

directive to set the AIC to any desired
value. label definitions are nonrelocatable
and are assigned the current value of the
AILC. The data directives .WORD, .BIOCK, and
.BYTE cause the ALC—instead of the regular
IC—to be incremented.

Data directives in an absolute section can't
place initial values in the locations
specified as they can when used in the
program section. Thus, the absolute section
serves as a tool for constructing a template
of label-memory address assignments.

You may use the equate directive (.EQU) in
an absolute section, but restrict the labels
to being equated only to absolute

expressions. The only other directives
allowed to occur within an absolute section
are JLIST, .NOLIST, .END, and the

conditional assembly directives.

Absolute sections may appear as global
objects.

The Assembler

The following 1is
absolute section:

DSKOUT
DSKSTAT
CONS
BLAGUE
REMOUT
OFFSET

-ASECT
-ORG ODFOOH

-BYTE
-BYTE

. -WORD

.BLOCK &
.WORD. - -
JEQU
.PSECT .

REMOUT+2

e NE R Veone N Ne Ne N Ne

a simple example of

start absolute section

set ALC to DFOO hex ,
note - no data values assigned
Label assignments below

DSKOUT = DFOO

DSKSTAT = DFO1

CONS = DFO2

BLAGUE=DFO04 (4 bytes)

REMOUT = DFO8

OFFSET = DFOA

1-24

an

The Assembler

ASSEMBLER DIRECTIVES

Assembler directives (sometimes referred to as
pseudo-ops) enable you to supply data to be
included in the program and control the assembly
process. Place assembler directives in the
source code as predefined identifiers preceded
by a period (.).

The following metasymbols are used in the syntax
definitions for assembler directives:

@ Special characters and items in capital
letters must be entered as shown.

@ Items within angle brackets (<>) are defined
by you.

@ Items within square brackets ([]) are
optional.

@ The word 'or' indicates a choice between two
items.

1-25

The Assembler

@ Items in lowercase letters are generic names
for classes of items.

The following terms are names for classes of
items:

b The occurrence of one or more
blanks.
comment Any legal comment. (Refer to

the "Comment Field" paragraph
presented earlier in this
chapter.)

expression Any legal expression. (Refer
to a prior paragraph entitled
"Expressions.")

integer Any legal integer constant as
defined eariler in the section
called "Constants."

label Any legal label. (Refer to the
"Label Field" paragraph earlier
in this chapter.)

value Any label, constant, or
expression. Its default value
is 0.

value list A list of zero or more values

delimited by commas.

identifier A legal identifier as defined
in a preceding paragraph
entitled "lIdentifiers.'")

The Assembler

idlist A 1list of one or more
identifiers delimited Dby
commas.

id:integer 1list A 1list of one or more

identifier-integer pairs
separated by a colon and
delimited by a comma. The

colon:integer part is optional;
its default value is 1.

character string Any legal character string.
(See the paragraph "Character
Strings," above.)

file identifier Any legal name for a Pascal
text file.
Example:

[<label>] [b] .ASCII b <character string> [<con_ntnehb] %
This indicates that you may optionally include

the label field, and that you must include a
character string as an operand.

Small examples are included after each
definition to supply you with a reference to the
specific syntax of the directive.

1-27

The Assembler

Procedure-Delimiting Directives

Include at least one set of
procedure-delimiting directives in every
source program (including those intended for
use as stand-alone code files). The assembler
is used most frequently for assembling small
routines intended to be linked with a host
compilation unit. Use the directives .PROC
and .FUNC to identify and delimit assembly
language procedures; and .RELPROC and .RELFUNC
to identify and delimit dynamically
relocatable procedures. Dynamically
relocatable procedures may reside in the code
pool; they are subject to more of the system's

memory management strategies. (For more
detailed information about using these
directives, refer to the section, "Program

T.inking and Relocation," presented later on in
this chapter.)

1-28

.PROC

Form:

Example:

The Assembler

Identifies the beginning of an
assembly language procedure.
The procedure 1is terminated
when another delimiting
directive occurs in the source
file.

Tb] .PROC b <identifier> [,<integer>] [<comment>]

(identifier> 1is the name
associated with the assembly
procedure.

{integer> indicates the number
of parameter words passed to
this routine. The default is
0.

~ .PROC DLDRIVE,2 = -

1-29

The Assembler

Form:

Example:

Identifies the beginning of an
assembly language function.
The host compilation wunit
expects a function to return a
result on the top of the stack;
otherwise, .FUNC is equivalent
to the .PROC directive.

Cbl .FUNC b <identifier>[,<integer>] [<comment>]

<{identifier> 1is the name
associated with the assembly
procedure.

{integer> indicates the number
of parameter words passed to
this routine. The default is
O.

.FUNC RANDOM

1-30

-RELPROC

Form:

Example:

The Assembler

Identifies the beginning of a
dynamically relocatable
assembly language procedure.
Such assembly procedures must
be position-independent. (See
the "Program Linking and
Relocation" section in this
chapter.) The procedure is
terminated when another
delimiting directive occurs in
the source file.

[b] .RELPROC b <identifier> [,<integer>] [<comment>]

<identifier> 1is the name
associated with the assembly
procedure.

{integer> indicates the number
of parameter words passed to
this routine. The default is
0.

.RELPROC POOF,3

1-31

The Assembler

-RELFUNC

Form:

EFxample:

-END

Form:

Identifies the beginning of a
dynamically relocatable
assembly language function.
The host compilation unit
expects this function to return
a function result on top of the
stack; otherwise, .RELFUNC 1is
equivalent to the .RFLPROC
directive.

bl :RELFUNC b <identifier>[,<integer>]. [<comment>]

{identifier> 1is the name
associated with the assembly
function.

{integer> indicates the number
of parameter words passed to
this routine. The default is
0.

- ;RELFch-:vQOOQF
Marks the end of an assembly
source file.

‘[<label>] Tb1 LEND

1-32

The Assembler

Data and Constant Definitions

-ASCII

Form:

Example:

Converts character strings to a
series of ASCII byte constants

in memory. The bytes are
allocated sequentially as they
appear 1in the string. An

identifier in the label field
is assigned the location of the
first character allocated 1in
memory .

[<label>] [bl .ASCII b <character string> [<comment>]

{character string> 1is any
string of printable ASCII
characters delimited by double
quotes.

.ASCII" "HELLO" .~

1-33

The Assembler

-BYTE

Form:

Example:

Allocates and initializes
values in one or more bhytes of

memory. Values must be
absolute byte quantities. The
default wvalue is =zero. An

identifier in the 1label field
is assigned the location of the
first byte allocated in memory.

'£<'Labe"l>Jv Cb] .BYTE b Cvaluelist] C<comment>] -

TEMP .BYTE 4; code would be 04 hex ~~
TEMP1 .BYTE ; codevuou[d be 00 - hex .~ .- -

1-34

-BLOCK

Form:

Example:

The Assembler

Allocates and initializes a
block of consecutive bytes in
memory . A byte value must be
an absolute quantity. The
default wvalue is =zero. An
identifier in the 1label field
is assigned the location of the

first byte/word allocated.

“[<label>] bl .BLOCK b <length>L,<value>] [<comment>]

<{length> is the the number of
bytes to allocate with the
initial value <value>.

TEWP .BLOCK 4,6H

The output code would be:

06 06 06 06 ;four bytes with value 06 hex

1-35

The Assembler

-WORD

Form:

Example:

Example:

Allocates and initializes
values in one or more
consecutive words of memory.
Values may be relocatable
quantities. The default value
is zero. An identifier in the
label field 1is assigned the
location of the first word
allocated.

" [<label>] Cbl .WORD b <valuelist> C{cohment>]-
TEMP LWORD © 0,2,,4 -

On a processor which has the
least-significant byte first in
a word, the output code would
be:

0000

" 0200 e ! A
0000 ° ; this is a.default value.
i 7 ; j b
L1° .WORD L2

The output code would be a word
containing the address of the
label T.2.

1-36

-EQU

Form:

Example:

The Assembler

Associates a label with a
particular value. Labels may
be equated to an expression
containing relocatable labels,
externally referenced 1labels,
and/or absolute constants. The
general rule 1is that labels
equated to values must be
defined before use. The
exception to this rule is for
labels equated to expressions
containing another 1label.
local labels may not appear in
the label field of an equate
statement.

Tt <label> [b] .EQU 5-.'<value?,b C<comment>1.. 4

BASE .- .EQU _ R6

1-37

The Assembler

Location Counter Modification

These directives affect the value of the
location counter (I or ALC) and the location
in memory of the code being generated.

-ORG If used at the beginning of an
absolute assembly program,

initializes

location
Using .ORG

counter to <value>.
anywhere else generates
bytes until the value of the

location counter
<value>.
Form: " " [bl .0RG b <value> [<comment>]
Example: .0RG 1000H

1-38

The Assembler

-ALIGN Outputs sufficient =zero bytes
to set the location counter to
a value that is a multiple of
the operand value.

Form: e '_[.bil .ALIGN b <value> Eicbm@entfl

Example: ALIGN 2 -

This aligns the IC to a word
boundary.

Listing Control Directives

Use these directives to control the format of
the assembled 1listing file generated by the

assembler. These directives don't generate
code, and their source lines don't appear on
assembled listings. (For a more detailed

description of an assembled listing, refer to
the '"Assembler Output" paragraph, presented
later in this chapter.)

1-39

The Assembler

.TITLE

Form:

Example:

<ASCIILIST

Form:

Example:

Changes the title printed on
the top of each page of the
assembled listing. The title
may be up to 80-characters
long. The assembler changes
the title to 'SYMBOLTABLE
DUMP' when printing a symbol
table; the title reverts back
to its former value after the
symbol table is printed. The
default value for the title

1 1

1s .

b3 .]’ITLE:B'<charactev'_ 'étring5 C(é:omﬁent)]
wiPITLE »"MACROS"

Prints all bytes the .ASCII
directive generates in the
code field of the list file,
creating multiple 1lines in
the list file if necessary.
Assembly begins with an
implicit LJASCIILIST
directive.

[b] .ASCIILIST [<comment>]

1 T S

1-40

-NOASCIILIST

Form:

Example:

-.CONDLIST

Form:

Example:

The Assembler

limits the printing of data
the .ASCITI directive
generates to as many hytes as
will fit in the code field of
one line in the list file.

[h] .NOASCIILIST = [<comment>] .
“.NOASCIILIST

lists source code contained
in the unassembled sections
of conditional assembly
directives.

b1 .CONDLIST [<comment>]

- «CONDLIST

1-41

The Assembler

-NOCONDLIST

Form:

Example:

-NOSYMTABLE

Form:

Example:

Suppresses the 1listing of
source code contained in the
unassembled sections of
conditional assembly
directives. Assembly begins
with an implicit .NOCONDLIST
directive.

~ [b1" .NOCONDLIST [<comment>] -
~NOCONDLIST: i

Suppresses the printing of a
symbol table after each
assembly routine in an
assembled listing.

[b - .NOSYMTABLE - [<comment>] -

.NOSYMTABLE

1-42

-PAGEHEIGHT

Form:

Example:

-NARROWPAGE

Form:

Example:

The Assembler

Controls the number of lines
printed in an assembled
listing between page breaks.
Assembly begins with an
implicit .PAGEHEIGHT 59
directive.

[b] .PAGEHEIGHT <integer> F<comméﬂf>’.'l
.PAGEHEIGHT 40. . -

Limits the width of an
assembled listing to 80
columns. The symbol table is
printed in a narrow format,
source lines are truncated to
a maximum of 49 characters,
and title lines on the page
headers are truncated to a
maximum of 40 characters.

. [b} .NARROWPAGE [<comment>]:: =

NARROWPAGE

1-43

The Assembler

-PAGE

Form:

Example:

LIST

Form:

Example:

Continues the assembled
listing on the next page by
sending an ASCII form feed
character to the assembled
listing.

Tb) .PAGE

PAGE

Enables output to the 1list
file, if a 1listing isn't
already being generated. You
can use .LIST and .NOLIST to
examine certain sections of
source and object code
without creating an assembled
listing of the entire
program. Assembly begins
with an impliecit JLIST
directive.

Cb] .LIST

SLIST .. . =

-NOLIST

Form:

Example:

-MACROLIST

Form:

Example:

The Assembler

Suppresses output to the list
file, 1f it isn't already
off.

bl .NOLIST
.NOLIST

Specifies that all subsequent
macro definitions have their
macro bodies printed when
they are called in the source

program. Assembly begins
with an implicit .MACROLIST
directive. The section
called "Macro Language,"

presented later 1in this
chapter, gives a detailed
description of macro

language.

~ [b] .MACROLIST -

.MACROLIST

1-45

The Assembler

-NOMACROLIST

Form:

Fxample:

-PATCHLIST

Form:

Example:

Specifies that all subsequent
macro definitions won't have
their macro bodies printed
when they are called in the
source program. Only the
macro identified and
parameter 1list are included
in the listing.

- [b] .NOMACROLIST
NOMACROLIST

Lists occurrences of all back
patches of forward-referenced
labels in the 1list file.
Assembly begins with an
implicit .PATCHLIST
directive. For a detailed
description of back patches,
refer to the paragraph,
"Forward References," 1in the
section called, ""Assembler
Output," presented later in
this chapter.

Cb]l .PATCHLIST

SPATGHEIST. - i i

1-46

The Assembler

-NOPATCHL.IST Suppresses the 1listing of
back patches of forward

references.
Form: [b] .NOPATCHLIST .

Example: © .NOPATCHLIST

Program Linkage Directives

Linking directives enable communication
between separately assembled and/or compiled
programs. later in this chapter, the section
called "Program Linking and Relocation" has a
detailed description of program linking.

.CONST Allows the assembly procedure to
access globally declared
constants in the host
compilation unit.

Form: . [bl .CONST b <idlist> [<comment>]

Fach <ID> 1is the name of a
global constant declared in the
host.“

Example: .CONST LENGTH

1-47

The Assembler

-PUBLIC

Form:

Fxample:

Allows an assembly language
routine to reference variables
declared in the global data
segment of the host compilation
unit.

[b .PUBLIC b <idlist> [<comment>] -

Each <KID> 1is the name of a
global variable declared in the
host.

. .PUBLIC I,J,LENGTH

1-48

-PRIVATE

Form:

Example:

The Assembler

Allows an assembly language
routine to store variables,
which only the assembly language
routine can access, 1in the
global data segment of the host
compilation unit.

£b] .PRIVATE b <id:integer List> [<comment>]

Fach <ID> is treated as a label
defined in the source code.
{integer> determines the number
of words of space allocated for
<ID>.

_ .PRIVATE . PRINT,BARRAY:9

1-49

The Assembler

- INTERP

Form:

Example:

Allows an assembly language
procedure to access code or data
in the p-code PME. .INTERP is a
predefined symbol for a
processor-dependent location in
the resident PME code; you may
use offsets from this base
location to access any code in
the PME. To use this feature
correctly, you nmust know the
PME's jump vector for this
location. .INTERP is generally
restricted to systems
applications.

valid when. used in <expression>
ERR .EGU 12 " .. " ; hypothetical
A : ; routine offset

BOMB .EQU .INTERP*ERR
. "JMP BOMB _

1-50

-REF

Form:

Example:

-DEF

Form:

Example:

The Assembler

Provides access to one or more
labels defined in other assembly
language routines.

Ebj .kEF'<idList>{E$comment5]'
.REF SCHLUMP -

Makes one or more labels, to be
defined in the current routine,
available for other assembly
language routines to reference.

_'ESJ .DEF <idlist> [<comment>J

* _DEF. FOON,YEEN

1-51

The Assembler

Conditional Assembly Directives

A detailed description of conditional assembly
features is presented later in this chapter in
a section called, "Conditional Assembly."

.IF Marks the start of a conditional
section of source statements.

Form: Cbl .IF b <expression> [= ot & <ex§rgssioq>] [<comment>]
Example: IF DEBUG .
-ENDC Marks the end of a conditional

section of source statements.

Form: Cbl .ENDC [<comment>]

Example: S

1-52

The Assembler

-ELSE Marks the start of an
alternative section of source
statements.

Form: .[_b] .ELSE [}<cAomment>] A

Example: -ELSE -

Macro Definition Directives

A detailed description of macro language is
presented later 1in this chapter in the
section, "Macro Language."

-MACRO Indicates the start of a macro
definition.
Form: Eb] ‘..MA(:R_Oi b <identifier> C<cotpment:'>] ! :

{identifier> calls the macro
being defined.

Example: .MACRO ADDWORDS

1-53

The Assembler

- ENDM Marks the end of a macro
definition.

Form:

Example:

1-54

The Assembler

Miscellaneous Directives

- INCL.UDE

Form:

Example:

Causes the assembler to start
assembling the file named as an
argument of the directive; when
the end of this file is reached,
assembling resumes with the
source code that follows the
directive in the original file.
This feature 1is useful for
including a file of macro
definitions or for splitting up
a source program too large to be
edited as a single text file.
You can't use .INCLUDE in: (1)
an included source file (that
is, nested wuse of the
directive); and (2) in a macro
definition.

[bl .INCLUDE b <file identifier> [<comment>]

At least one blank character
must separate the comment field
of the .INCLUDE directive from
the file identifier.

.INCLUDE MYDISK:MACROS

1-55

The Assembler

. ABSOLUTE

Form:

Example:

Causes the following assembly
routine to be assembled without
relocation information. Labels
become absolute addresses and
label arithmetic is allowed in
expressions. J.ABSOLUTE is wvalid
only before the first procedure
delimiting directive occurs.
Don't wuse .ABSOLUTE when the
assembled routine 1is to be
called from a high-level host.
(Refer to the "Program ILinking
and Relocation" section,
presented later in this chapter,
for a detailed description of
abolute code files.)

" [b} .ABSOLUTE ‘[<comment>}

. .ABSOLUTE

-ASECT

Form:

Example:

-PSECT

Form:

Example:

The Assembler

Specifies the start of an
absolute section. For a
detailed description of
".ASECT," refer to the paragraph
called "Absolute Sections,"
presented earlier 1in this
chapter.

Cbl .ASECT [<c6mpent>]

<ASECT

Specifies the start of a program
section and terminates an
absolute section. (Refer to the
"Absolute Sections" paragraphs,
presented earlier.)

Cb]l .PSECT [<comment>]

L =PSECT

1-57

The Assembler

-RADIX

Form:

Example:

Sets the current default radix
to the value of the operand.
Allowable operands are: 2
(binary), & (octal), 10
(decimal), and 16 (hexadecimal).
The default radix of an integer
constant 1is processor-specific.
(See Chapter 2.)

Cbl .RADIX <integer> [<comment>]

.RADIX 10 ; decimal
" : ; default radix.

1-58

The Assembler

CONDITIONAL ASSEMBLY

Use conditional assembly directives to
selectively exclude or include sections of
source code at assembly time. Initiate
conditional sections with the .IF directive and
terminate them with the .ENDC directive. They
may contain the .ELSE directive. Use
conditional expressions to control inclusion of
conditional sections. Conditional sections may
contain other conditional sections.

When the assembler encounters an .IF directive,
it evaluates the associated expression to
determine the condition value. If the condition
value is false, the source statements following
the directive are discarded until a matching
.ENDC or .FLSE is reached. If you use the .ELSE
directive in a conditional section, source code
before the .ELSE is assembled if the condition
is true; and source code after the .FLSE is
assembled if the condition is false.

Overall syntax for a conditional section (using
the meta language described earlier in the
"Assemblers Directives" paragraph) is as
follows:

.IF- <conditional expression>
: <source statements>

L.ELSE - = |
S <source statements>]
.~ «ENDC - v

1-59

The Assembler

Conditional Expressions

A conditional expression can take one of two
forms: a single expression or comparison of
two character strings or expressions. The
first form is considered false if it evaluates
to zero; otherwise, it's considered true. The
second form of conditional expression compares
for equality or inequality (indicated by the
symbols '=' and '<>', respectively).

Example:

.IF LABEL1-LABEL2 ; ar1thmetwc expresston'
. .. ; This code is assembled only 1f i
=) .- ; difference is not zero
(<XF XA=USTUFE™ comparison expression
: ..; This code is assembled only if
.2 outer condition: is true .and .
; text of first macro parameter
2 ; is equal to "STUFF".
-ENDC >
¢ ’
;

; terminate nested section.. ~ .~
; This code is assembled if outer
- ; conditijon is true e
ELSE .
3 This code is assembLed if first
: e ; condition is false
" .ENDC o

; terminate outer section

1-60

The Assembler

MACRO LANGUAGE

The assembler allows you to use a macro language

in source programs. This enables you to
associate a set of source statements with an
identifying symbol. When the assembler

encounters this symbol (known as a macro
identifier) in the source code, it substitutes
the corresponding set of source statements
(known as the macro body) for the macro
identifier, and assembles the macro body as if
it had been included directly 1in the source
program. You can use carefully designed set of
macro definitions in all source programs to
simplify developing assembly language routines.

In addition, you can enhance the macro language
by including a mechanism for passing parameters
(known as macro parameters) to the macro body
while it 1is being expanded. This allows a
single macro definition to be used for an entire
class of subtasks.

Here is a simple example:

2 5 macro definition...:
. .MACRO STRING ; macro identifier is
: S5 SSTRING
; Macro Body:
; %1 and %2 are-
; ~parameter
; = declarations _ .-

ABYTE- . X2 7 2nd parameter is
; RS ~; length byte
LASCII %1~ . ; 1st parameter is .
: Ay ; ~.argument -
-ENDM ; end macro definition

1-61

The Assembler

Further down in the source code...

" ; 1st-macro call
; parameters are.
llluRITEIII .
and- ¥5..0¢

STRING "WRITE",5. ;
STRING . "TYPE SPACE",10. ; 2nd macro call
;

-; parameters are’
;7 ""TYPE. SPACE"! -
and '10.°

This is what gets assembled...

.BYTE - S5.-; data string declarations

. <ASCII "WRITE" - - 5
.BYTE = 10. S

© JASCII. "TYPE SPACE"

Macro Definitions

You may place macro definitions anywhere in a
source program and delimit them with the
directives .MACRO and .ENDM. The macro
identifier must be unique to the source
program, except when you redefine a predefined
machine instruction name as a macro
identifier. You shouldn't include a macro
definition within another macro definition.
However, you may include macro calls. You may
nest macro calls to a maximum depth of five
levels. A macro definition must occur before
any calls to that macro are assembled, but
macro calls may be forward-referenced within
the bodies of other macro definitions.

1-62

The Assembler

Macro Calls

You can place macro calls anywhere in a source
program that code may be generated. A macro
call consists of a macro identifier followed

by a 1list of parameters. Delimit the
parameters with commas and terminate them with
a carriage return or semicolon. Upon

encountering a macro call, source code is read
from the text of the corresponding macro body.
Macro parameters within the macro body are
substituted with the text of the matching
parameter listed after the macro identifier
that initiated the call.

Parameter Passing

You may reference macro parameters in a macro
body by using the symbol '%n' in an
expression, where 'n' is a single nonzero
decimal digit. Upon scanning this symbol, the
assembler replaces it with the text of the
n'th macro parameter. Note that macro
parameters are not expanded within the quotes
of an ASCII data string.

Three cases are possible:

1. The parameter exists—the substitution is
made.

2. The n'th parameter doesn't exist in the
parameter list being checked (less than n
parameters were passed); a null string is
substituted.

1-63

The Assembler

3. Another symbol of the form '%m' is
encountered in the parameter 1list. 1f
nested macro calls exist, the text of the
m'th parameter at the next higher level of
macro nesting is substituted; otherwise,
the symbol itself is assembled.

You rust pass parameters without leading and
trailing blanks. You may pass all assembly
symbols, except macro calls, as parameters.

The following is an example of parameter
passing in macros:

.MACRO DOS" -

UNO %2,UN.
- SAR: < EA
JENDM .
-MACRO _ UNO
MoV X1:%2
SAL X2

ENDM

1-64

The Assembler

In a program, the macro call...

DOS TROIS,DEUX

assembles as...

MOV DEUX,UN ; UNO got UN directly,
: ; ‘but had to use DOS's
; 2nd param
SAL UN]
SAR TROIS ; DOS used its.own 1st.
. ; param

Scope of Labels in Macros

A problem arises in using macro language when
the definition of a macro body requires you to
use branch instructions and, thus, have
labels. Declaring a regular label in a macro
body is incorrect if the macro is called more
than once, because the 1label would be
substituted twice into the source program and
flagged by the assembler as a previously
defined label. You can use
location-counter-relative addressing, but this
is prone to errors in nontrivial applications.
The best solution is to generate labels that
are local to the macro body; the assembler's
local labels can do this.

1-65

The Assembler

Local label names you declare in a macro bhody
are local to that macro; thus, a section of
code that contains a local label $1 and a
macro call whose body also has the local label

$1, assembles without errors. (Contrast this
with what happens when two occurrences of $1
fall between two regular labels.) This

feature allows you to use local labels freely
in macros without conflicting with the rest of
the program.

NOTE: Remember that a maximum of 21 local
labels can be active at any instant.

Local Labels as Macro Parameters

Passing local labels as parameters has a
special property. Unlike other macro
parameters, 1local labels aren't passed as
uninterpreted text. The scope of a local
label passed in a macro call doesn't change
as it is passed through increasing levels of
macro nesting, regardless of naming
conflicts along the way. One use of this
property is passing an address to a macro
that simulates a conditional branch
instruction.

The following is an example of passing local
labels as macro parameters:

2MACRO EIN

JE - #
.. . JNE %1
$1 §

-ENDM- -

The

In a program, the code...

TWIE

= sm‘

EIN

$1
JMP

" RET

ICHI,NI

$1

SAN

assembles as...

TWIE
suB
JE

JNE

$1

$1
- JMP

RET .

ICHI,

$1

$1

Ne Ve oNe NN

i

- SAN

NI

this references macro-
local Llabel

this references
outside $1°

macro local. label

outside $1

1-67

Assembler

The Assembler

PROGRAM LINKING & RFI.OCATION

The assembler produces either absolute or
relocatable object code that you may 1link, as
required, to create executable programs from
separately assembled or compiled modules. (The
linker is described in Appendix A.)

Program linking directives generate information
the system linker requires to 1link modules.
Some of the advantages of linking are:

@ You can divide long programs into separately
assembled modules to avoid a long assembly,
reduce the symbol table size, and encourage
modular programming techniques.

@ You can enable other linked modules to share
modules.

@ You can add utility modules to the system
library for a large number of programs to use
as external procedures.

@ Programs can call assemhly language
procedures directly.

The assembler generates linker information in
both relocatable and absolute code files. The
system linker accesses this information during
linking and removes it from the 1linked code
file.

1-68

The Assembler

Relocatable code includes information that
allows a loader program to place it anywhere in
memory, while absolute (also called core image)
code files must be loaded into a specific area
of memory to execute properly. Assembly
procedures running in the p-System environment
must always be relocatable; the system PME
performs loading and relocation at a load
address the state of the system determines.

Absolute code won't run under the p-System
environment (under which high-level programs
must run). However, relocatable code can run
under the p-System. Code segments containing
statically relocatable code remain in main
memory throughout the lifetime of their host
program (or unit) and are position-locked for

that duration. Thus, relocatable code may
maintain and reference its own internal data
space (or spaces). In addition, statically

relocatable code saves some space because its
relocation information doesn't have to remain
present throughout the life of the program.

1-69

The Assembler

The directives .PROC and .FUNC designate
statically relocatable routines; .RFLPROC and
.RELFUNC designate dynamically relocatable
routines. Code segments that contain
dynamically relocatable code don't necessarily
occupy the same location in memory throughout
their host's lifetime, but are maintained in the
code pool along with other dynamic segments
(mostly p-code); they may be swapped in and out
of main memory while the host program (or unit)
is running. Thus, dynamically relocatable code
shouldn't maintain internal data spaces if that
data must last across calls to the assembled
routine. Data that is meant to last across
different calls to the assembly routine must be
kept in your host data segments by using
.PRIVATEs and .PUBLICs.

1. Data space is embedded in the code, but the
code doesn't move:

.PROC- FOON’
LWORD' SPACE =

JEND - -

2. The code moves, hut data space is allocated
in the host compilation unit's global data
segment:

LRELPROC FOON - -
LPRIVATE. SPACE

~END

1-70

The Assembler

3. Caution: The code may move and since the
data is embedded in the code, the data may be
destroyed between calls to the routine:

.RELPROC FOON
- .WORD SPACE

LEND -

Code pool mnagement is described in the
Internal Architecture Reference Manual.

Program Linking Directives

This section describes the overall use of
linking directives. All linking of assembly
procedures involves word quantities; it isn't
possible to externally define and reference
data bytes or assembly time constants.
Arguments of these directives must match the
corresponding name in the target module (a
lowercase Pascal identifier will match an
uppercase assembly name, and vice versa) and
must not have been used before their

appearance in the directive. The assembler
treats all subsequent references to the
arguments as special cases of labels. The

linker and/or PME resolves these external
references hy adding the 1link-time and
run-time offsets to the existing value of the
word quantity in question. Thus, any initial
offsets generated by including of external
references and constants in expressions are
preserved.

1-71

The Assembler

Host Communication Directives

Use the directives .CONST, .PUBLIC, and
.PRIVATE to allow constants and data to be
shared between an assembly procedure and its
host compilation unit. For examples, see
the "Program I.inkage Directives" paragraph
in the '"Assembler Directives" section,
presented previously in this chapter.

.CONST Allows an assembly procedure
to access globally declared
constants in the host
compilation unit. The linker
patches all references to
arguments of J(CONST with a
word containing the value of
the host's compile-time
constant.

.PUBLIC Allows an assembly procedure
to access globally declared
variables in the host
compilation unit. Note: You
can use this directive to set
up pointers to the start of
multi-word variables in host
programs; it isn't limited to
single word variables.

1-72

The Assembler

.PRIVATE Allows an assembly procedure

to declare variables in the
global data segment of the
host compilation unit that
the host can't access. The
optional length attribute of
the arguments allows
multi-word data spaces to be
allocated; the default data
space is one word.

External Reference Directives

Use the directives .REF and .DEF to allow
separately assembled modules to share data
space and subroutines. (For examples, refer

ahead,

in this chapter, to the paragraph,

"Example of Linking to Pascal.")

.DEF

.REF

Declares a label to be defined in
the current program as accessible to
other modules. One restriction is
imposed on its use—you can't .DEF a
label that has been equated to a
constant expression or used in an
expression containing an external
reference.

Declares a label existing and

.DEF'ed 1in another module to be
accessible to the current program.

1-73

The Assembler

Program Identifier Directives

Use the directives .PROC, .FUNC, .RELPROC,
.RELFUNC, and .END as delimiters for source
programs. You must include at least one
pair of delimiting directives 1in every
source program (relocatable or absolute).

The identifier argument of the .PROC or
.RELPROC directive serves two functions:
the linker can reference it when linking an
assembly procedure to its corresponding
host, and other modules can reference it as
an externally declared label. Specifically,
the declaration:

.PROC FOON ; procedure heading -

in a source program—is functionally
equivalent in the assembly environment to
the following statements:

. .DEF FOON = ; FOON may be externally
<. . 5, referenced -
_ EOON. ~ i declare FOON as a Llabel” .

This feature allows an assembly module to
call other (external and eventually linked
in) assembly modules by name. Use the .FUNC
and .RELFUNC directives when linking an
assembly function directly to a host
program; they aren't intended for uses that
involve linking with other assembly modules.

1-74

The Assembler

The 1linker references the optional integer
argument after the procedure identifier. It
does this to determine if the number of
parameter words passed by the host's
external procedure declaration matches the
number specified by the assembly procedure
declaration. It isn't relevant when linking
with other assembly modules.

Linking Program Modules

For information on linking with the p-System's
other high-level languages, refer to the
documentation on that particular language.

Linking with a Pascal Program

External procedures and functions are
assembly language routines declared in
Pascal programs. To run Pascal programs
with external declarations, you must compile
the Pascal program, assemble the external
procedure or function, and link the two code
files.

1-75

The Assembler

A host program declares a procedure to be
external in a syntactically similar manner
to a forward declaration. The procedure
heading is given (with parameter 1list, if
any), followed by the keyword 'EXTERNAL'.
Calls to the external procedure use standard
Pascal syntax. The compiler checks that
calls to the external procedure agree in
type and number of parameters with the
external declaration. All parameters are
pushed on the stack in the order of their
appearance in the parameter 1list of the
declaration; thus, the right-most parameter
in the declaration will be on the top of the
stack. (For a detailed description of
parameter passing conventions, refer to the
next section, called "Parameter Passing
Conventions.")

You must make sure that the assembly
language routine maintains the integrity of
the stack. This includes removing all
parameters passed from the host, preserving
the SS and SP registers, and making a clean
return to the Pascal run-time environment
using the return address originally passed
to it. If you don't do this, a potentially
fatal system crash can occur, as assembly
routines are outside the scope of the Pascal
environment's run-time error facilities.
(For a detailed description of
Pascal/assembly language protocols, refer
ahead, in this chapter, to the section,
"Sharing PME Resources.")

1-76

The Assembler

An external function is similar to a
procedure, but has some differences that
affect the way that parameters are passed to
and from the Pascal run-time environment.
First, the external function call pushes
one, two, or four words on the stack before
any parameters have been pushed. Two or
four words are pushed for a function of type
real, depending upon the real size that you
are using. One word is pushed for all other
types of functions. The words are part of
the p-machine's function calling mechanism
and are irrelevant to assembly language
functions; the assembly routine must throw
these away before returning the function's
result. Second, the assembly routine nmust
push the proper number of words (2 or 4 for
type real; 1, otherwise) containing the
function result onto the stack before
passing control back to the host. A
subsequent section, "Sharing PME Resources,"
describes a clean way to do all of this
without ever using an actual POP or PUSH
operation.

1-77

The Assembler

Parameter Passing Conventions

The ability of external procedures to pass
any variables as parameters gives you
complete freedom to access the
machine-dependent representations of
machine-independent host data structures.
However, with this freedom comes the
responsibility of respecting the integrity
of the p-machine run-time environment. To
give you a better understanding of the
host/assembly language interface, this
section enumerates the p-machine's
parameter passing conventions for all data
types; it doesn't actually describe data
representations. For examples of
parameter passing between Pascal and
external procedures, see Appendix C.

You may pass parameters by either value or
by reference (variable parameters). To
manipulate assembly language, variable
parameters are handled in a more
straightforward fashion than value
parameters.

The word "tos" is used in the following
sections as an abbreviation for '"top of
stack."

1-78

The Assembler

Variable Parameters

You should reference variable parameters
through a one-word pointer passed to the
procedure. Thus, the procedure
declaration:

procedure 'pas's__by_name (var :i,j _: integer; -
var q : some_type); external;

would pass three one-word pointers on the
stack; tos would be a pointer to q,
followed by pointers to j and i.

A Pascal external procedure declaration is
allowed to contain variable parameters
lacking the usual type declaration; this
enables you to pass variables of different
Pascal types through a single parameter to
an assembly routine. Untyped parameters
aren't allowed in normal Pascal procedure
declarations.

The procedure declaration:
prbceduré untyped var (var i; var qr:

some type); external;

contains the untyped parameter 'i'.

1-79

The Assembler

Value Parameters

Value parameters are handled according to
their data type. Pass the following types
by pushing copies of their current values
directly on the stack: boolean, char,
integer, real, subrange, scalar, pointer,
set, and long integer. Other sections of
this manual describe the number of words
per data type and the internal data
format. For instance, the declaration:

procedure pass_by value (i : integer; r : real);
" external;

would pass two words or four words on
"tos" containing the value of the real
variable 'r' followed by one-word
containing the value of the integer
variable 'i'.

Pass variables of type record and array by
value in the same manner as variable
parameters; pointers to the actual
variable are pushed onto the stack. Pass
variables of type PACKED ARRAY OF CHAR and
STRING by value with a segment pointer
(described in next section).

Value parameters which are passed using
pointers should be copied into a local
data space for processing. The original
copy of a value parameter should never be
altered.

1-80

The Assembler

String and Byte Array Parameters

When a string or byte array is passed as a
value parameter to an assembly language
routine, a "segment pointer" is passed on
the stack. A segment pointer consists of
two words. The first word (tos) contains
either NIL or a pointer to a segment
environment record. (This is determined
by whether the parameter is a constant or
variable.)

If the first word is NIL, then the second
word (at tos-1) points to the parameter.

If the first word isn't NIL, then to find
the parameter it 1is necessary to chain

through some records. The first word
(tos) is a pointer and the second word
(tos-1) is an offset. The first word

points to a segment environment record
(EREC). The third word of that record
contains a pointer to a SIB (Segment
Information Block). If the first word of
the SIB is NIL, then the second word is a
pointer to the base of the segment where
the parameter resides. If the first word
of the SIB isn't NIL, then it points to a
Pool Descriptor. The contents of the
first two words of the Pool Descriptor
plus the contents of the second word of
the SIB is a pointer to the base of the
segment where the parameter resides.
(Note that the first word of the Pool
Descriptor contains the 16
most-significant bits, and the second word
contains the 16 least-significant bits.

1-81

The Assembler

Each word, however, is in the natural byte
sex of the host processor. On processors
that address the least-significant byte
first, this means that the bytes are in
this order: second most-significant,
first most-significant, fourth
most-significant, third most-significant.)

The exact 1location of the parameter is
given by the segment base plus the
contents of the second word on the stack
(tos-1), which is an offset into the code
segment.

The following figure 1illustrates this
accessing scheme. Note that cases 1 and 2
produce a 16-bit address which is relative
to the base of the p-System Stack/Heap
area. Case 3, however, produces a 32-bit
absolute physical address. (For a full
description of these mechanisms, refer to
the Internal Architecture Reference
Manual.)

1-82

CASE 1

e IF TOS = NiL PRI
TOS-1 » LT[¢
TOS
CASE 2
EREC
siB
(N 3 [y
TOS—1 2 2
o5 IF TOS &= NIL ” 1
— > | I I
IF 1ST
t PARAMETER WORD OF
SiB = NIL
+
|
BASE OF
SEGMENT -
CASE 3
EREC
si8
™ ; R
TOS~1 2 2
IF TOS # NIL]
T0S f—— _ 1 _ 1 =
IF 1ST
t PARAMETER POOL DESCRIPTOR WORD OF
T SIB = NIL
* 2
] {
.
BASE OF — <
SEGMENT *=

Figure 1-2. String and Byte
Array Parameters

The Assembler

Example of Linking to Pascal

Note that in the following example the host
program passes control to the beginning of
an assembly procedure whether or not machine
instructions are there. Therefore, all data
sections you allocate in the procedure must
either: (1) occur after the end of the
machine instructions; or (2) have a jump
instruction branch around them.

PROGRAM EXAMPLE; { Pascal host program }
const size = 80; _
var i,j,k:- integer;

Lst1: array [[0..91 of char; .

{ PRT and LST2 get allocated here }
procedure. do nothing; external;
function null_funclxxyxx,z:integer)

. tinteger; external;

begin
k = 45;
do_nothing;
©j = null_func(k,size);
end.
.PROC ~ DONOTHING ; underscores are not
; significant in-Pasal
.CONST SIZE ; can get at size
; constant in host
.PUBLIC T:LSTY ; and also these two
.; global vars
.DEF TEMP1 ; this allows NULLFUNC
; to get at templ
; code starts here...
POP RETURN1 ; return addr pushed on
POP RETURNZ2 ; stack
5 ; does nothing
PUSH RETURN2 ; set up stack for
PUSH RETURN1 ; return
RETL

; data area

RETADR .EQU TEMP1 .

* TEMP1 .WORD
RETURNT .WORD =
RETURNZ2 - .WORD :

E 5 ; end of procedure

DONOTHING

e

.FUNC NULLFUNC,2
.PRIVATE PRT,LST2:9 10 words of

i private data
references data temp
in DONOTHING

code starts here

" .REF TEMP1

SVoNp NeSe a

1-83

The Assembler

POP. .~ _ RETURNY -

: ; save return address
POP = RETURN2 - A -
BOP i s SRR T ; get parameter 'z'
. POP ¢ LST2+4 ;. get parameter 'xxyxx'
POP .TEMP1 _; toss 1 word of junk
N .+ (funtion return area)
i 4 i ; performs null action
- PUSH - LST2+4 - - 5 return xxyxx as
L ; result
PUSH RETURN2 ;. restore subr Link =

- PUSH - "RETURN1 ;
SRETE= =0 % .return to calling -
3 program -

data starts here

SvoNe N

RETURNT .WORD .
RETURNZ .WORD -

e

A ‘end of assembly
- .END - 7 7

Stand-Alone Applications

The p-System assembler can produce absolute
(core image) code files for use outside of
the p-System's run-time environment.

The p-System doesn't include a linking
loader or an assembly language debhugger, as
the p-machine architecture isn't conducive
to running programs (whether high or low
level) that must reside in a dedicated area
of memory. You are responsible for loading
and executing the object code file; do this
by using the p-System, with the
understanding that the existing run-time
environment may be Jjeopardized in the
process. (For some ideas on how to create a
Pascal loader program, refer ahead, in this

1-84

The Assembler

chapter, to the paragraph, "Executing
Absolute Code Files.")

Use Compress utility for a much easier and
more versatile way of doing this task. It
allows you to relocate and compact code.
Refer to Appendix B.

Assembling

Use the .ABSOLUTE and .ORG directives to
create an object code file suitable for
use as an ahsolute core image. .ABSOLUTE
causes the creation of nonrelocatable
object code, and .ORG can initialize the
location counter to any starting value.
Limit a source file headed by .ABSOLUTE to
no more than one assembly routine;
sequential absolute routines don't produce
continuous object code and can't be
successfully linked with one another to
produce a core image.

The code file format consists of a
one-block code file header followed by the
absolute code. It is terminated by one
block of linker information; thus,
stripping off the first and last block of
the code file leaves a core image file.
You should use .ABSOLUTE in only one
routine; though 1linker information is
generated, it's difficult to link absolute
code files to produce a correct core image
file.

1-85

The Assembler

Executing Absolute Code Files

The following section describes one method
of using the p-System to load and execute
absolute code files. The program outlined
isn't the only solution. You can also use
the system intrinsics fto read and/or move
the code file into the desired memory
location; however, this requires a
knowledge of where the p-machine emulator,
operating system, and your program reside
in order to prevent system crashes by
accidentally overwriting them. The
program outlined below allows you the most
freedom in loading core images; the only
constraint 1is that the assembly code
itself isn't overwritten while being moved

to its final location. You can detect
this possibility before proceeding with
loading.

NOTE: In most cases, loading object code
into arbitary memory locations, while a
p-System 1s resident, adversely affects
the system; the absolute assembly language
program is then on its own, and rebooting
may be necessary to revive the p-System.

The loader program consists of:

1. A host program that calls two external
procedures.

2. One or more linkable absolute code
files to be loaded. (.RELPROCs aren't
allowed.)

The Assembler

3. A small assembly procedure,
MOVE_AND GO, that moves the above
object code files from their system
load address to their proper locations
and then transfers control to them.

4. A small assembly language procedure,
LOAD ADDRESS, that returns the system
load addresses of the assembly code to
the host program.

The absolute code files are assembled to
run at their desired 1locations, and
MOVE AND GO contains the desired load
addresses of each core image. Both
LOAD ADDRESS and MOVE AND GO have external
references to the core images; these are
used to calculate the system load address
and code size of each image file. The
whole collection is linked and executed.
The host performs the following actions:

1. Print the result of calling
LOAD ADDRESS to determine whether the
area of memory in which the p-System
loaded the assembly code overlays the
known final load address of the core

images.
Issuing a prompt to continue, so that

the program can be aborted if a
conflict arises.

1-87

The Assembler

2. Calls MOVE_AND GO.

1-88

The Assembler

OPERATION OF THE ASSEMBLER

You call the system assembler by pressing 'A'
with the operating system Command menu
displayed. This command executes the file named
SYSTEM.ASSMBLER . (Note the missing 'E' in the
file name; this is required to conform to the
file system's restrictions on file name
lengths.) If this isn't the name of the desired
assembler version, be sure to save the existing
file 'SYSTEM.ASSMBLER' under a different name
before changing the desired assembler's name to
'SYSTEM.ASSMBLFR' . Assemblers that aren't in
use are usually saved with a file name such as
' ASM8086.CODE' .

Support Files

The p-System Assembler has two associated
support files: an opcodes file and an error
file. Always store these along with the
assembler code file.

1-89

The Assembler

In order for the assembler to run correctly,
the proper opcodes file must be present on
some on-line disk. The opcodes file has a
name such as 7Z80.0PCODES, 9900.0PCODES, and so
forth. The opcodes file contains all
predefined symbols (instruction and register
names) and their corresponding values for the
associated assembly language. If the opcodes
file 1isn't on-line, the assembler writes
'opfilename> not on any vol' and aborts the
assembly. The 8086 assembler uses an
additional opcodes file called 8087.FOPS.
This 1is only necessary when you are
programming for the 8087 floating point
processor.

The assembler also has an error file that
contains a list of processor-specific error
messages. The error file has a name such as
8080.ERRORS, 68K.ERRORS, and so forth. The
error file need not be present to run the
assembler, but it can aid greatly in
eliminating syntax errors from a newly written
program.

Setting Up Input And Output Files

When you first call the assembler from the
Command menu, it attempts to open the work
file as its input file; if a work file exists,
the first prompt will be the listing prompt
described in the next paragraph, '"Responses to
Listing Prompt," and the generated code file
will be named 'SYSTEM.WRK.CODE'. If not, this
prompt appears:

- Assemble what text?

The Assembler

Enter the file name of the input file; then
press <{return>. Pressing only <return)> aborts
the assembly; otherwise, the next prompt
appears:

To what codefile?

Enter the desired name of the output code
file, followed by pressing <return>.

Pressing only <return> here causes the
assembler to name the output
"*SYSTEM.WRK.CODE', but pressing '$' causes
the code file to be created with the same file
name prefix as the source file. The assembler
then displays its standard listing prommt.

Responses to Listing Prompt

Before assembling begins, the following prompt
appears on the console:

8086 Assembler Cversionl. L oL T
Output file for assembled ,Lis;ing: (<CR> -for none)

1-91

The Assembler

At this point, you may respond with one of the
following:

1

The <esc> key followed by <return>; this
aborts the assembly and returns you to the
Command menu.

'CONSOLE ;! or '#l1:'; this sends an
assembled listing of the source program to
the screen during assembly.

'"PRINTER: ' or '#6:'; which sends an
assembled listing to the printer unit.
'"REMOUT : ! or '#8:'; which sends an
assembled listing to the REMOTE unit.

A carriage return; which causes the

assembler to suppress generation of an
assembled listing and ignore all listing
directives.

All other responses cause the assembler to
write the assembled listing to a text file
of that name; any existing text file of
that name is removed in the process. For
instance, the following responses cause a
list file named 'LISTING.TEXT' to be
created on disk unit 5:

#5:listing.text
#5:listing

1-92

The Assembler

In all cases, it's your responsibility to
ensure that the specified unit is on-line; the
assembler will print an error message and
abort if it is requested to open an off-line
I/0 unit.

Output Modes

If you send an assembled listing to the
console, then that listing is displayed on the
screen during the assembly process; however,
if you send the listing to some other unit or
if no listing is generated, the assembler
writes a running account of the assembly
process to the screen for your benefit. One
dot is written to the screen for every line
assembled; on every 50th line, the number of
lines currently assembled is written on the
left side of the screen (delimited by angle
brackets).

When the assembler processes an include file
directive, the console displays the current
source statement:

" .INCLUDE <file name>

This allows you to keep track of which include
file is currently being assembled.

The Assembler

At the end of the assembly, the console
displays the total number of lines assembled
in the source program and the total nunber of
errors flagged in the source program.

Responses to Error Prompt

When the assembler uncovers an error, it
prints the error number and the current source
statement. (If applicable to the error; this
doesn't apply to undefined labels and system
errors.) The assembler then attempts to
retrieve and print an error message from the
errors file. If the errors file can't be
opened—the file doesn't exist or there isn't
enough memory—no message appears. This is
followed by the menu:

,<sp>(cont,i"nue),'<'esc>(t_ervﬁinate), EXdit-

Pressing 'E' calls the editor, pressing
{space> continues the assembly, and pressing
{esc> aborts the assembly. The following
restrictions exist when you call the editor or
attempt to continue:

The Assembler

1. In most cases, pressing <space> restarts
the assembly process with no problems;
since assembly language source statements
are independent of one another with respect
to syntax, it's not difficult for the
assembler to continue generating a code
file. Thus, a code file will exist at the
end of an assembly if you press <space> for
every (nonfatal) error prompt that appears;
of course, the code produced may not be a
correct translation of your source program.
The assembler considers certain system
errors fatal; these errors abort the
assembly regardless of how you respond to
the preceding menu.

2. If you press 'E', the system automatically
calls the editor. Unless you are using a
work file, the editor prompts you for a
file name. You should indicate the file
currently being assembled. The editor
positions the cursor at the location where
the error occurred.

Miscellany

At the end of an assembly, an error message
is printed for each undefined 1label. In
some cases, you can ignore occurrences of
undefined 1labels if these 1labels are
semantically irrelevant to the desired
execution of the code file. The resulting
code file will be perfectly valid, but the
references to the nonexistent labels won't
be completely resolved.

1-95

The Assembler

In addition to generating a code file, the
assembler makes use of a scratch file, which
is always removed from the disk upon normal
termination of the assembly. Occasionally
though, a system error my occur that
prevents the assembler from removing this
file; 1if this happens, a new file named
'LINKER.INFO' may appear. You can easily
remove it since it's entirely useless
outside of the assembler. This should occur
rarely if at all.

1-96

The Assembler

ASSEMBLER OUTPUT

The assembler can generate two varieties of
output files. It always produces a code file,
but you can control whether or not it generates
an assembled listing of the source file.

An assembled listing displays each line of the
source program, the machine code generated by
that line, and the current value of the location
counter. The listing may display the expanded
form of all macro calls in the source program.
Any errors that occur during assembly contain
messages printed in the 1listing file, usually
immediately preceding the line of source code
that caused the error. A symbol table is
printed at the end of the listing; it's the
directory for 1locating all labels declared in
the source program.

An assembled listing of a source program printed
on hard copy is one of the most effective
debugging aids available for assembly language
programs; it's equally useful for off-line,
'mental' debugging and for use with system
debuggers.

A description of the code file format is beyond
the scope of this document. See the Internal
Architecture Reference Manual.

The Assenmbler

Source Listing

When you respond to the assembler's listing
prompt with a 1list file name, a paginated
assembled listing is produced. The default
listing is 132-characters wide and 55 lines
per page. Each line of a source program 1is
included in the assembled listing, except for
source lines that contain 1list directives.
Source statements that contain the equate
directive .EQU have the resulting value of the
associated expression listed to the left of
the source line.

Macro calls are always listed, including the
list of macro parameters and the comment
field, if any. The macro is expanded by
listing the body (with all formal parameters
replaced by their passed values) if the macro
list option was enabled when the macro was
defined. Macro expansion text is marked in
the assembled listing by the character '#'
just to the 1left of the source listing.
Comment fields in the definition of the macro
body aren't listed in macro expansions.

Source lines with conditional assembly
directives are 1listed; however, source
statements in an unassembled part of a
conditional section aren't listed unless the
.CONDLIST directive has been used.

1-98

The Assembler

Error Messages

Error messages in assembled listings have the
same format as the error messages sent to the
console, except that the prompt isn't
included. (Refer back to the section,
"Operation of the Assembler.")

Code Listing

The code field lies to the left of the source
program listing. It always contains the
current value of the location counter, along
with either code generated by the matching
source statement or the value of an expression
occurring in a statement that includes the
equate directive .EQU. All are printed in the
default list radix of the assembler version
being used in either hexadecimal or octal.
(Refer ahead in this chapter to the section,
"Example Assembled Listing.") Spaces delimit
separately emitted bytes and words of code on
the same line.

1-99

The Assembler

Forward References

When the assembler is forced to emit a byte
or word quantity that is the result of
evaluating an expression that includes an
undefined 1label, it 1lists a '*' for each
digit of the quantity printed (for example,
an unresolved hexadecimal byte is listed as
"**!' while an unresolved octal word appears
as PrEkkkk)| If you use the .PATCHLIST
directive, the assembler 1lists patch
messages every time it encounters a label
declaration that enables it to resolve all
occurrences of a forward reference to that
label. The messages (one for every
backpatch performed) appear before the
source statement that contains the label in
question; they look like this:

<location in codefile patched>* <patch value>

With this feature, the listing describes the
contents of each byte or word of emitted
code. If you want the assembled listing to
be especially clean and neat, wuse the
.NOPATCHLIST directive to suppress the patch
messages.

1-100

The Assembler

External References

When the assembler emits a word quantity
that results from evaluating an expression
that contains an externally referenced
label, the value of that label (which can't
be determined until link time) is taken as
zero. Therefore, the emitted value reflects
only the result of any assembly time
constants that were present in the
expression.

Multiple Code Lines

Sometimes, one source statement can generate
more code than can fit in the code field.
In most cases, the code is 1listed on
successive lines of the code field, with
corresponding blank source listing fields.
Three exceptions are the .ORG, .ALIGN, and
.BLOCK directives; the code field for these
arguments is limited to as many bytes as
will fit in the code field of one line.
This 1is because most uses of these
directives generate large numbers of
uninteresting byte values.

1-101

The Assembler

Symbol Table

The symbol table is an alphabetically sorted
table of entries for all symbols declared in
the source program. Fach entry consists of
three fields; the symbol identifier, the
symbol type, and the value assigned to that
symbol. The symbol identifiers are defined
in a dictionary printed at the top of the
symbol table. Symbols equated to constants
have their constant values in the third
field, while program labels are matched with
their 1location counter offsets; all other
symbols have dashes in their value field, as
they possess no values relevant to the
listing.

1-102

The Assembler

Example Assembled listing

The following 1is an example assembled
listing. It demonstrates several of listing
features just discussed (including macro
expansion, forward references, syntax
errors, and the symbol table):

1-103

The Assembler

1-104

CHAPTER 2
PROCESSOR-SPECIFIC

INFORMATION

Processor-Specific Information

INTRODUCTION

This chapter 1is intended to be wused in
conjunction with processor manuals distributed
by the manufacturers of the various processors.
These manuals provide syntax conventions for the
instruction sets and address modes used by the
corresponding assembler versions. The company
chosen as a base for syntax conventions is
listed for each version, along with a list of
deviations from that company's syntax
conventions.

Processor-Specific Information

LSI-11/PDP-11 ASSEMBLER

Syntax Conventions

The 11 assembler adheres to DEC standard
syntax for opcode fields, register names, and
address modes. The location counter symbol is
an asterisk '*',

Sharing PME Resources

The return address to the system is passed on
the stack. Registers O and 1 are available to
the assembly routine; other registers must be
saved on entry and restored on exit.

Memory Organization

The 11 processor 1is Dbyte-addressed and
word-oriented; machine instructions and data
words must be aligned to start on an even byte
boundary. The byte sex is
least-significant-byte-first.

Default Constant and List Radices

The default constant radix and default 1list
radix are octal.

Processor-Specific Information

280 ASSEMBLER

Syntax Conventions

The 780 assembler adheres to Zilog standard
syntax for opcode fields, register names, and
address modes. The following conventions may
deviate from this standard:

@ The syntax for exchanging the register pair
AF and the alternate register pair 'AF' is
the following:

EX AF 20
The location counter symbol is a dollar
sign '$’'.

Sharing PME Resources

The return address to the system is passed on
the stack. All registers are available for
use in the assembly routine.

Memory Organization

The Z80 processor 1is hyte-addressed and
byte-oriented. The byte sex 1is
least-significant-byte-first.

2-5

Processor—-Specific Information

Default Constant and lList Radices

The default constant radix is decimal and the
default list radix is hexadecimal.

2-6

Processor-Specific Information

6502 ASSEMBLER

Syntax Conventions

The 6502 assembler adheres to Rockwell
standard syntax for opcode fields and register
names. The following conventions may deviate
from this standard:

@ Immediate operands are specified by using a
preceding pound sign '#' character:

© LABEL .EQU_ 5 CR LR aete
"~ LDA - MLABEL -~ - ; immediate

@ ’Zero-page addressing is achieved only by
using absolute operands (that is, assembly
time constants) with values between O and
255:

LABEL .EQU 5 z
LDA LABEL ; zero-page

@ Indirect addressing has the following form:

- LDA "aLABEL,x‘ ; indexed-indirect (preindexing)
LDA- @LABEL,Y 7 indirect-indexed (pest_inde}xivng)
- . JMP - QLABEL - ; indirect jump e

The location counter symbol is an asterisk
1!

2-7

Processor-Specific Information

Sharing PME Resources

The return address to the system is passed on
the stack. All registers are available for

use in the assembly routine.

Memory Organization

The 6502 processor 1is byte-addressed
byte-oriented. The Dbyte sex
least-significant-byte-first.

Default Constant and List Radices

and
is

The default constant radix and default 1list

radix are hexadecimal.

2-8

Processor-Specific Information

6800 ASSEMBLER

Syntax Conventions

The 6800 assembler adheres to Motorola
standard syntax for opcode fields and register
names. The following conventions may deviate
from this standard:

@ All instructions which can specify the A
and B registers have the register name
separated from the opcode field:

LDA = A,L : : : :
-LDA . A0,X - (instead of LDA A,X) -
LDX 0,X (instead of LDA X)
-STA "~ A1] =
PUL A
ASL B

@® Immediate operands are specified by using a
preceding pound sign '#' character:

LABEL +EQU .5
LDA A HLABEL ~ .- ; “immediate

@ 7Zero-page addressing is achieved only by
using absolute operands (that is, assembly
time constants) with values between 0 and
255

LABEL -EQU 5 : 7
- LDA - B,LABEL ; zero-page

2-9

Processor-Specific Information

@ Numbers in hex must always contain four
digits (yes, even for bytes):

.BYTE 0002H,00A%H specifies the quantity 02A9 base 16

The location counter symbol is an asterisk
Tk,

Sharing PME Resources

The return address to the system is passed on
the stack. A1l registers are available for
use in the assembly routine.

Memory Organization

The 6800 processor 1is byte-addressed and
byte-oriented. The Dbyte sex 1is
most-significant-byte-first.

Default Constant and List Radices

The default constant radix is decimal and the
default list radix is hexadecimal.

2-10

Processor-Specific Information

8080 ASSEMBL.ER

Syntax Conventions

The 8080 assembler adheres to Intel standard
syntax for opcode fields, register names, and
address modes. The location counter symbol is
a dollar sign '$'.

Sharing PME Resources

The return address to the system is passed on
the stack. All registers are available for
use in the assembly routine.

Memory Organization

The 8080 processor 1is byte-addressed and
byte-oriented. The byte sex 1is
least-significant-byte-first.

Default Constant and List Radices

The default constant radix is decimal and the
default list radix is hexadecimal.

2-11

Processor-Specific Information

9900 ASSEMBLER

Syntax Conventions

The 9900 assembler adheres to TI standard
syntax for opcode fields, register names, and
address modes. The following conventions may
deviate from this standard:

@ In operand fields, the lack of an address
mode character (for example, a '@' or '*'
preceding the operand) defaults to '@'.
The 1location counter symbol is a dollar
sign '$'.

Sharing PME Resources

The return address to the system is passed in
register 11. Registers O thru 5 are available
to the assembly routine; other registers must
be saved on entry and restored on exit.

Memory Organization

The 9900 processor is byte-addressed and
word—oriented; machine instructions and data
words must be aligned to start on an even byte
boundary. The byte sex is
most-significant-byte-first.

2-12

Processor-Specific Information

Default Constant and List Radices

The default constant radix is decimal and the
default list radix is hexadecimal.

2-13

Processor-Specific Information

6809 ASSEMBLER

Syntax Conventions

The 6809 Assembler adheres to Motorola
standard syntax for opcode fields and register
names. The following conventions may deviate
from this standard:

@ Immediate operands are specified by using a
preceding '#':

e bguocc \ HO1
@ Indirect addressing is specified by a

single leading at sign ('@') instead of
square brackets ('[]'):

LDX _'aTHEgE,ecR
@ Zero-page addressing 1is achieved only by

using operands that are absolute (for
example, not labels) and less than 256:

ZEROPAGE .EQU 15
LDB ZEROPAGE

2-14

Processor-Specific Information

Sharing PME Resources

The return address to the system is passed on
the stack. Registers Y and U must be saved
and restored if they are to be used. All
other registers are available for use.

Memory Organization

The 6809 processor is byte-addressed and
byte-oriented. The byte sex 1is
most-significant-hyte first.

Default Constant and List Radices

The default constant radix is decimal and the
default list radix is hexadecimal.

2-15

Processor-Specific Information

7Z8 ASSEMBLER
Syntax Conventions

Symbols

The Z8 Adaptable Assembler adheres to Zilog
standard syntax (refer to the Z8 PLZ/ASM
Assembly Language Programming Manual) for
opcode fields, register names, and
addressing modes.

Numeric Constants

The 78 Assembler follows the constant
conventions of other adaptable assemblers,
except that octal constants are indicated by
a radix switch character of 'O' rather than
'Q', and binary constants are indicated by a
radix switch character of 'B' rather than
R b

0111018 08 . 14670 111100

Predefined Constants

There are no predefined constants in the 78
Assembler. Specifically, the constants
'%Ll, I%Tl’ I%Rl’ '%P', v%%v’ and v%Ql in
Zilog syntax are NOT allowed.

2-16

Processor-Specific Information

Sharing PME Resources

No PME is currently available for the Z7Z8.

Memory Organization

The Z8 processor 1is byte-addressed and
byte-oriented. The byte sex 1is
least-significant-byte-first.

Default and List Radices

The default constant radix is decimal and the
default list radix is hexadecimal.

2-17

Processor-Specific Information

8086 /8088/8087 ASSEMBLER

Syntax Conventions

The p-System 8086/88/87 Assembler differs in
some respects from the standard Intel
assembler. This section lists these
differences.

Assembler Directives. None of the Intel
assembler directives are 1implemented.
Instead, the assembler directives described in
Chapter 1 of this manual are available.

Parenthesis. Enclose index or base register
references in a memory operand in parentheses,
not square brackets; for example, FIRST(BX)
rather than FIRST[BX]. Group expressions with
angle brackets rather than parentheses.

Immediate Byte. Code ADD immediate byte to
memory operand as:

; APDBIM memop, immedbyte

to distinguish it from the ADD memop,
immedword, which is the default. Similarly,
MOVBIM, ADCBIM, SUBBIM, SBBBIM, CMPBIM,
ANDBIM, ORBIM, XORBIM, and TESTBIM are added
to the vocabulary.

2-18

Processor—Specific Information

Memory Byte. Code INC memory byte as:

INCMB memop

to distinguish it from INC memory word, which
is the default. Similarly, DECMB, MULMB,
IMUIMB, DIVMB, IDIVMB, NOTMB, NEGMB, ROIMB,
RORMB, RCIMB, RCRMB, SAIMB, SHIMB, SHRMB,
SARMB are added to the vocabulary to specify
memory byte operands.

Direct Addressing Mode. Code MOV with direct
addressing as:

MOVM AX,02DEFH
. MOVM. . O2DEFH,AX -

to distinguish it from MOV immediate value
which is the default. Similarly, ADCM, ADDM,
ANDM, CMPM, ORM, SBBM, TESTM, and XORM are
added to the vocabulary for use with direct
addressing.

2-19

Processor-Specific Information

MUL: and DIV Byte. In MUL, IMUL, DIV, IDIV
the single memory operand form,

MUL - memop

implies a word operation. To specify a byte
operation, you may use either MULMB memop, or
the form

;MOL AL,memop

The same holds true for IMUL, DIV, IDIV.
(Note that DIV AL,memop is rather misleading,
as the actual operation would be
AX /memory-byte.)

MOV Substitute for LEA. For LEA reg,label or
IEA reg,labeltconst the assembler substitutes
MOV reg,immedval where immedval = 1label or
label+const. This saves four clock times (4
versus 8).

IN and OUT. The normal form of IN and OUT is
IN ac,port or IN ac,DX and OUT port,ac or OUT
DX,ac where ac=AL denotes an 8-bit data path
and ac=AX denotes a 16-bit path. Since the
accumulator 1is the only possible register
source/destination (DX specifies port=address
in DX), single operand forms are also
provided: INB and OUTB for byte data, and INW
and OUTW for 16-bit data. The syntax is INB
port or INB DX.

2-20

Processor-Specific Information

In the two-operand forms of IN and OUT, the
order of the operands isn't important; thus
OUT ac,DX or OUT ac,port will be acceptable.

String Operations. The mnemonics for the
string operations are suffixed with B or W to
denote byte or word operations; thus, MOVSB
and MOVSW, CMPSB and CMPSW, SCASB and SCASW,
LODSB and LODSW, and STOSB and STOSW are in
the vocabulary, but MOVS—STOS aren't.

Segment Override. XIAT and the string
instructions (9) have implied memory operands
and nothing is required to be coded in the
operand field. However, to permit you to
specify a segment override prefix in the case
of XLAT, MOVSB/MOVSW, CMPSB /CMPSW, and
LODSB/1ODSW, the assembler permits operand
expressions for these instructions.

NOTE: That only the default segment for SI,
namely DS, can be overridden. The segment for
DI is ES and can't be overridden. A segment
override prefix of DS applied to SI doesn't
generate a segment override prefix.

If you were to write these operations with
operands, they would have this syntax:

XLATAL, (BX) AT

-~ MovVsS{B/W}(DI) ,Lseg:1(SI)
CMPS{B/W}(DI) ,Lseg:] (SI).
SCAS{B/W) (D) ,AX

© LODS{B/WYAX,[seg:1(S1)

. STOS{B/W}(DI) AX z

2-21

Processor-Specific Information

You may prefix the string instructions with a
REP (repeat) instruction of some type. The
assembler flags an error if you specify both
REP and a segment override.

In addition to the forms DS:memop, and so on,
you may write a separate mnemonic SEG followed
by a segment register name in a statement
preceding the instruction mnemonic. For
example:

MOV AX,ES:AVALUE

is equivalent to:

SEG - ES MOV AX,AVALUE

Long Jumps, Calls, and Returns. Implement
intersegment CALIL,, RET, and JMP as follows:

1. The mnemonics CALILL, RETL, and JMPL
specifically designate intersegment
operations.

2. An indirect address (for example, (reg) or
(label)) is assembled in standard fashion
with a "mod op r/m" effective address byte
possibly followed by displacement bytes.
The memory Ilocation referenced must hold
the new IP, and the next higher location
must hold the new CS.

2-22

Processor-Specific Information

3. The direct address form mst have two
absolute operands:

- CALLL exprl , expr2

where exprl is the new IP and expr2 becomes
the new CS. Constants or external symbols
(for example, .REF definitions) qualify as
absolute operands.

8087 Mnemonics. Mnemonics for the 8087
floating point operations are standard except
for some of the memory reference operations,
where a letter suffix is appended to denote
the operand size:

D short real or short integer (double word)
Q long real or long integer (quad word)

integer word

|=

T temporary real (ten byte)

The 'D' and 'Q' suffixes apply to the
following real ops:

FADD, FCOM, FCOMP, FDIV, FDIVR, FMUL,
FST, FSUB, FSUBR, FLD, FSTP

For example, FADDD, FADDQ, and so.

The 'T' suffix applies only to FLD and FSTP.

2-23

Processor-Specific Information

The 'W' and 'D' suffixes apply to
following integer ops:

FIADD, FICOM, FICOMP, FIDIV, FIDIVR,
FIMUL, FIST, FISUB, FISUBR, FILD,
FISTP

the

The 'Q' suffix for long integers applies only

to FIID and FISTP.

Sharing PME Resources

Calling and Returning

The p-machine emulator (PME) calls

an

assembly routine using the call long (CALIL)

operator. Thus, the top of the stack
contains a two-word return address upon
entering into the routine. In order to

return from an assembly routine, use

the

return long (RETL) operator.
(Alternatively, the return address can be
popped and a Jjump long (JMPL) operation

used.)

2-24

Processor-Specific Information

Accessing Parameters

The 8086/88 Processor contains instructions
that facilitate accessing parameters passed
to an assembly routine. By moving the value
of SP (which points to the p-machine stack)
into BP, you can access the parameters hy
adding an offset of 4 bytes (to account for
the two-word return address). The first
parameter, located four bytes above the top
of the stack, is actually the last declared
parameter 1in the host routine (the
parameters are pushed in the order that they
are declared).

If a .FUNC assembly routine is to return a
function value, you should place it just
above the last parameter (which is just
before the first declared parameter) using
the same accessing scheme. The size of the
returned function value is either one, two,
or four words as described in a previous
paragraph called, "Linking with a Pascal
Program."

You may give the RETL operator an operand
that indicates how many bytes to cut the
stack back after popping its two-word return
address. Use the size of the data space
occupied by the parameters. Thus,
parameters may be accessed, and a clean
return made, without ever using a specific
POP or PUSH instruction.

2-25

Processor-Specific Information

The following is an example of this scheme
of accessing parameters and returning:

MOV BP,SP b ;
MOV AX,(BP+4) ;Last Param
MOV - BX,(BP+6) ‘;Middle Param

" MOV CX,(BP+8) ;First Param

MOV ° (BP*+10) ,RSLT ;Function return val
ety = 7 Cif JFUNCY-==-
RORETENS : ;Remove 3 params

Register Usage

All of the 8086/88 registers are available
for use by your assembly routines (the PME
saves and restores the register values that
it needs).

However, you must preserve SS and SP. (You
may create and use a private stack if a
minimum of 40 words are left available for
stack expansion during interrupts. This is
a very dangerous procedure, however, and is
not recommended.)

NOTE: You must maintain the integrity of
the p-machine stack. If you don't, the
results can't be predicted.

2-26

Processor-Specific Information

Upon entering into the assembly routine, SS
points to the bhase of the p-machine stack
and data area. Also, DS, ES, and CS are all
equal to the base of the p-System code
segment.

Parameters that are passed as Pascal VAR
variables are p-System pointers to actual
data. These pointers are relative to SS.
For example:

‘MOVBX, (BP+4) = pick up’ p@f‘amefer (pointe»r')
: '.MOVAX,»SS;_'(BX_)_\ i pick up VAR parameter value

JPRIVATE and .PUBLIC variables are also SS
relative. For example:

LPRIVATE = .COUNTER
MOV .. AX,SS:COUNTER .-

.BYTE quantities, .WORD quantities, and
.REF'ed labels are relative to CS, DS, or
ES.

Memory Organization

The 8086 processor is byte-addressed and
byte-oriented. The byte sex 1is
least-significant-byte-first.

2-27

Processor-Specific Information

Default Constant and List Radices

The default constant radix is decimal. The
default list radix is hexadecimal.

2-28

Processor-Specific Information

68000 ASSEMBLER

Syntax Conventions

The 6800 Assembler follows Motorola standard
syntax for opcode fields, register names and
address modes. The following list points out
some restrictions.

@ Only the absolute short address mode is
available. The absolute long address can't
be generated by the assembler.

@ Jlabels may not be accessed with the
absolute address mode.

@ References to labels with a .PROC or .FUNC
generate the PC-relative address mode.

@ An external label may only be accessed as a
displacement from an address register.

@ Immediates above FFFFH can't be generated.

@ Opcodes which have an optional suffix of A,
I, M, Q or X must contain that suffix
explicitly.

@ Ilength qualifiers (.B, .W or .L) must be
specified explicitly in those instructions
which have a choice of length. All other
instructions must not contain a length
qualifier.

2-29

Processor-Specific Information

The following instuctions mst contain a
length qualifier:

ADD, ADDA, ADDI, ADDQ, ADDX, AND, ANDI,
ASL (register), ASR (register), CLR,
CMP, CMPA, CMPI, CMPM, EOR, EORI, EXT,
ISL (register), LSR (register), MOVE
(except special forms), MOVEA, MOVEM,
MOVEP, NEG, NEGX, NOT, OR, ORI, ROL
(register), ROR (register), ROXL
(register), ROXR (register), SUB, SUBA,
SUBI, SUBQ, SUBX, TST

The following instructions must not contain a
length qualifier:

ABCD, ASL (memory), ASR (memory), BCHG,
RCLR, BSET, BTST, CHK, DBcc, DIVS, DIVU,
EXG, JMP, JSR, LEA, LINK, LSI. (memory),
ISR (memory), MOVE to CCR, MOVE to SR,
MOVE from SR, MOVE USP, MOVEQ, MULS,
MULU, NBCD, NOP, PEA, RESET, ROL
(memory), ROR (memory), ROXL (memory),
ROXR (memory), RTE, RSR, RTS, SBCD, Scc,
STOP, SWAP, TAS, TRAP, TRAPV, UNLK

The following instructions may contain an
optional 1length qualifier of .S (generate
short forward branch):

Bee, BRA, BSR

2-30

Processor-Specific Information

Sharing PME Resources

An assembly language procedure is called via a
JSR instruction, so it should expect a double
word return address on the stack. It is usual
to return via an RTS instruction.

Registers AO0-A2 and DO-D7 are available for
use. Register A3-A7 must be restored to the
values at call-time if they are used.

Since pointers within the p-machine are byte
offsets from a base register (A6), .PUBLIC
references to Pascal variables will generate
an offset, not the actual address, of the
variable. In order to access an external
variable, it is necessary to use this offset
as a displacement from A6. For example:

| ADDQ.W H1,ABC(AG)

will increment the Pascal variable ABC.

2-31

Processor-Specific Information

A variable parameter is a p-machine pointer to
the parameter, so it is also accessed as
above. For example, a variable parameter may
be accessed as follows:

. -MOVEQ #0,07 < ~; clear the upp-er half of 07

. MOVE:W _ ° 4(SP),D7 _-.; load the pointer (parameter) .

- ADDQ.W #1,0(A6,D7.L) _ ; increment the variable: .

References to variables in other assembly
language procedures (via a .REF) may be
accessed as above using (A2), provided the
segment the procedures are in is located in
the data area (for example, it 1isn't a
RELPROC).

Here 1is a 1list of the register values
available to the assembly language procedure
on entry:

A2 - base of-current segment

A3 - base of PME 7 g

A4 - p-machine program counter
" A6 - pointer to data area - -
' A7 --stack pointer

Processor-Specific Information

The .INTERP directive (used to access items in
the PME) is ignored. Instead, accesses should
be made relative to A3 (the base of the PME).
The following entry-points are available to
the assembly language programmer:

: ro(;{ine (A,ffset',: y .'parar'néters~

EUNEQBRR - ~ne DA ST DO vex'ecuti'onr er‘ror_Hu_mb_er -
- NATRET .. 08H . - R L SR

XFQERR may be used to cause an execution error
to be recognized from assembly language.
XEQERR should be jumped to, not called.
Before jumping to XEQERR, the stack should be
clear of all parameters (including the return
word), and all registers should be restored.
This routine is normally used for system work.

NATRET is the entry-point wused by
automatically generated native-code to return
to the p-System. It shouldn't be used for any
other purpose.

Memory Organization

The 68000 processor is byte-addressed and
word-oriented. The byte sex 1is
most-significant-byte first.

Default Constant and List Radices

The default constant radix is decimal, and the
default list radix is hexadecimal.

APPENDICES

APPENDIX A
THE LINKER

The linker is an item on the Command menu which
allows assembled code to be linked into a host
program. The linker may also be used to link
together separately assembled pieces of a single
assembly program.

The linker is a program of the sort called a
"link editor." It stitches code together by
installing the internal 1linkages that allow
various pieces to functon as a unified whole.

When a program that must be linked is R(un, the
linker is automatically called and searches
*SYSTEM.LIBRARY for the necessary external
routines. If you use X(ecute, instead of R(un,
or the assembled routines aren't in
SYSTEM.I.IBRARY, you are responsible for manually
linking the code before executing it.

When the Ilinker is called automatically and
can't find the needed code in *SYSTEM.LIBRARY,
it responds with the following error message.

Proc,

Func, i

Global, s, < e

or Public <jidentifier> undefined =

In order to manually use the linker, select
L(ink from the Command menu.

A-3

Appendix A

Using the Linker

The linker displays prompts asking for several
file names. It reads and links code together,
and displays the names of the routines it 1is
linking. The following paragraphs list those
prompts and explain the use or responses.

Host file? The host file should contain the
code for the high-level program
which references external routines.
Alternatively, the host file may
contain an assembled routine which
references other assembled routines.
The ".CODE" suffix is automatically
appended to the file name that you
specify (unless you terminate that
name with a period). If you respond
with <return>, the linker attempts
to open the code work file as the
host file.

Lib file? Any number of library files may be
specified. The prompt will keep
reappearing until you press the
{return>. Responding '*<return>'’
opens *SYSTEM.LIBRARY. The
successful opening of each library
file is reported. If the routines
in a 1lib file reference other
routines, those other routines are
also 1linked into the output file
(assuming that they are found in one
of the 1ib files).

A-4

Appendix A

Example (underlined portions are your input):

Lib file? *<return>
Opening *SYSTEM.LIBRARY
- Lib file? FIX.8<return>
No file FIX.8.CODE
Type <sp>(continue), <esc><terminate)
Lib file? FIX.9<return>
Opening FIX.9.CODE &
bad seg name &
Type <sp>(continue), <esc>(terminate), <space>
EIhRET a2 S Ny - Se

When the names of all library files have been
entered, the 1linker reads all the necessary
routines from the designated code files. It
then asks for a destination for the linked code
output:

Output file? Respond with a code file name
(often the same as the host
file). The .CODE suffix must be
included. If you press <return>,
(*SYSTEM.WRK.CODE) becomes the
output file.

After this last prompt, the linker commences
actual linking. During linking, the linker
displays the names of all routines being linked.
A missing or undefined routine causes the linker
to abort with the '<identifier> undefined'
message described above.

A-5

Appendix A

NOTE: Since the files may be assembled files,
they may be of either byte sex. However, all
files linked together must be of the same byte
sex. The linker produces a correct code file
regardless of which byte sex that is or whether
it is the same as the machine on which the
linker is running.

The code file produced by the linker contains
routines in the order in which they were given
in the library files. This is important to note
if the program is an assembly language file.
The code file contains first routines from the
host file and then library file routines, all in
their original order.

A-6

APPENDIX B
THE COMPRESS UTILITY

The Compress utility program takes an input code
file consisting of one or more linked assembly
procedures. It produces an object file suitable
for execution outside the p-System run-time
environment.

Compress can produce either relocatable or
absolute object files. Absolute code files are
relocated to the bhase address specified by you
and contain pure machine code. Relocatable code
files include a simplified form of relocation
information (a description of its format is in
this appendix). Both kinds of output files are
stripped of all file information normally used
by the system and must be loaded into memory by
your program in order to execute properly.

Preparing Code Files

The assembly routines must be created with the
assembler, and linked with the 1linker. Code
files containing anything other than one segment
of linked assembly code will cause Compress to
abort. Routines to be compressed shouldn't
contain any of the following assembler
directives.

.ORG .ABSOLUTE
.PUBLIC .PRIVATE
.CONST . INTERP

A-7

Appendix B

The .ORG and .ABSOLUTE directives produce
absolute code files directly from the assembler.
Code files that contain the .ABSOLUTE directive
can be compressed, but the resulting code will
be incorrect.

The .PUBLIC, .PRIVATE, .CONST and .INTERP
directives are used to communicate between
assembly procedures and a host compilation unit
(whether Pascal or some other language). These
have no use outside of the system's run-time
environment. Their inclusion in an assembly
program generates relocation information in
formats that will cause Compress to abort.

Running Compress

In order to run Compress, you should X(ecute
COMPRESS .CODE. This wutility displays the
following prompt:

Assembly Code File Compressor <release version>
Type '!' to escape ik ; i
Do you wish to produce a relocatable object file? (Y/N)

If you press 'N', the following prompt appears:

Base address of relocation Chex). :

A-8

Appendix B

This is the starting address of the absolute
code file to be produced. It should be entered
as a sequence of 1 to 4 hexadecimal digits
followed by <return>. The prompt will reappear
if an invalid number is entered.

The following prompt always appears:

File to compress :

Enter the name of the file to be compressed. It
isn't necessary to enter the '.CODE' suffix. If
the file can't be found, the prompt reappears.

. Output file (<ret> for same) :

Enter the name of the output file, which can be
any legal file name (Compress doesn't append a
.CODE suffix). Pressing <return> causes the
output file to have the same name as the input
file, thus eliminating the original input file.
If the file can't be opened, Compress will print
an error message and abort.

In all the previous prompts, pressing the
character '!' causes Compress to abort.

Appendix B

After receiving this information from you,
Compress reads the entire source file,
compresses the procedures, and writes out the
entire destination file. Large code files may
cause Compress to abort, if the system doesn't
have sufficient memory space.

While running, Compress displays for each
procedure the starting and ending addresses (in
hexadecimal) and the length in bytes. After
finishing, the total number of bytes in the
output file is displayed. If an absolute code
file 1is produced, the system displays the
highest memory address to be occupied by the
loaded code file.

Compress produces a file of pure code, which
must be loaded and executed directly by your
software.

A-10

Appendix B

Action and Output Specification

Compress removes the following information from
input files:

@ The segment dictionary (block 0 of code
file).

@ Relocation 1list and procedure dictionary
pointers.

@ Symbolic segment name and code sex word.

Embedded procedure DATASIZE and EXITIC words.

@ Procedure dictionary and number of procs
word.

@ Standard relocation list.

Procedure code in the output file is contiguous,
except for padding bytes, which are emitted
(when necessary) to preserve the word alignment
of all procedures. Code files always contain an
integral number of blocks of data and space
between the end of the executable code. The end
of the code file is zero-filled.

Relocatable object files must be formatted in
the following way. The relocatable code is
immediately followed by relocation information.
The last word in the last block of the code file
contains the code-relative word offset of the
relocation list header. The following lines are
an example.

<starting byte address of loaded code> + <word offset * 2>
- = <byte addrgss of reloca_t'i_on"l.ist header word>.

A-11

Appendix B

The 1list header word contains the decimal value
256. The next-lower-addressed word contains the
number of entries in the relocation list. This
word is followed (from higher addresses to lower
addresses) by the list of relocation entries.

Beneath the last relocation entry is a
zero-filled word, which marks the end of the
relocation information. Fach relocation entry
is a word quantity containing a code-relative
byte offset into the loaded code. The following
lines are an example:

<'start'ing byte address of lLoaded code> + <byte offset>
= <byte address of word to be relot_:ated> 2

Each byte address pointed to hy a relocation
entry is a word quantity that is relocated by
adding the byte address of the front of the
loaded code.

NOTE: If you relocate a file towards the high
end of the 16-bit address space, you must ensure
that the relocated file won't wrap around into
low memory (that is, <relocation base address> +
{code file size> must be less than or equal to
FFFF (hexadecimal)). Compress performs no
internal checking for this case.

A-12

APPENDIX C
CODING EXAMPLES

The first section in this appendix defines the
memory allocation scheme for Pascal data
structures. (This is necessary to understand if
you want to interface with these data structures
from assembly language.) The second section
gives assembly language coding examples (using
the 808 as the example processor) which
interface with the various Pascal data
structures. The final section contains some
examples of typical routines that you might need
to write.

A-13

Appendix C

PASCAL DATA STRUCTURES

Given the following Pascal declaration:

TYPE REC = RECORD
. FIELD 1,FIELD 2 : INTEGER:
‘FIELD_: 3 FIELD 4 : REAL;
¥ FIELD_§ B CHAR,
END; -
VAR A_RECORD .: REC; °
The order of allocation of the f1eLds is:
_FIELD_2 - 1 word for an integer
- FIELD_1. = 1 word for an integer
FIELD 4 - 4 words for a real
FIELD 3 - 4 words for a real
FIELD 5 - 1 word, the Low-order byte of which is used
In genera[, variables are allocated space using the fo{lou1ng scheme'
Nth element of the first declaration list .. :
(N-1)th element -of the first declaration Llist
C(N-2) th element of the f1rst declarat1on list

First éLement of the firsf declaration Llist
‘Nth element of the second declaration List
(N-1)th element of the second declaration List
“Nth element of the last declaration List

‘First element of the last declaration Llist
Using this scheme, the follou1ng two type declarations are
‘altocated identically:
. TYPE: REC1 = RECORD
; "¢ A : INTEGER; .
INTEGER;

B¢ T
C : INTEGER;
- END; -

_REC2 = RECORD
C,B,A : INTEGER;
END;

A-14

Appendix C

INTERFACING WITH PASCAL

This section
assembly language interfacing with the various
types of Pascal data structures.

Example 1:
Passing Variables by Value

contains several examples of

program var1ables _to assembly,
(* this program will be used as a dr1ver
for a number of assembly routines *)-
function 1nt by value (only_param- 1nteger)- integer; external-

- begin
end.
-.FUNC
_Mov

MoV

INC
- MoV

RETL

-END

writeln(int by value(1))

CINT_BY_VALUE,1
BR,SP

AX,, (BP+4)

AX
(BP+6) ,AX

NeNE NG NE NE N NE Ve oNe N NN SE Neoae Neone Ve ng

one word of parameters

store Stack Pointer into the
usable- Base Pointer G

the last-declared parameter...

-.in this case there is only one...
is 4 bytes down/up in the stack

because of the two word return
address on the top of the stack
just to do. something

the return location for a funct1on
always starts in the byte following’
the 'deepest" parameter...

one parameter, a one word integer,
therefore, the next location is

two bytes further into the stack
there are two bytes of parameters
to be removed from the stack before
returning to Pascal...note that the
function value is. not affected -

A-15

Appendix C

Example 2:
Passing Variables by Reference

A-16

Appendix C

Example 3:
Passing Pointers By Value

A-17

Appendix C

Example 4:
Passing Pointers By Reference

A-18

Appendix

Example 5:
Passing Reals By Value

program variable_passing;
function real_by value (only_parameter' real): real; externaL-

begin
writeln(real _by value(10 0) 4 1)
end. . :
o FUNC - REAL;pY_yALUE,A‘ ; & words of parameters
oty ; ; because reals are stored
5 _ ; as four-word numbers
MoV BP,SP - ; familiar
MoV AX, (BP+4) ~ ; last word of" parameter...
: ; the Llow-order bytes of "
; the mantissa

MoV BX,6. -

MOV NUMBER (BX) ,AX ; store the value . :
MoV AX, (BP+6) ; mext word of parameter
MoV - BX,4. T ;
MOV - NUMBER(BX) ,AX ; store the value i
MoV AX, (BP+8)- ; next word of parameter
MoV B8X,2.
Mmov NUMBER (BX) ,AX ; store the value -
MOV AX, (BP+10) ; first word of parameter...
‘; contains high-order byte

g ; of mantissa-and the exponent

MOV NUMBER ,AX ; store -the value

- { do something with the number, in this case multiply it by ten.s.
for example, increment the exponent by one }

Mov. AX ,NUMBER ot i
_INC - AH = 'exponent is high-order byte
MoV NUMBER ,AX

{ the next section stores the new values 1nto the stack for .
the function return to Pascal)

MoV BX,6.
MoV AX,NUMBER (BX)
MoV (BP+12) ,AX
MoV BX, 4.
MoV AX ,NUMBER (BX)
S MOV (BP+14) ,AX

MOV - BX 20

Appendix C

Example 6:
Passing Reals By Reference

A-20

Example 7:
Passing Characters By Value

A-21

Appendix C

Appendix C

Example 8:
Passing Characters By Reference

program variable passing;

var param: char;
procedure char_by reference (var only parameter: char); external;
begin

param := ‘a‘; -
char_by reference (param);

writeln(param)

end. 2

-PROC CHAR_BY_REFERENCE,1 ; one word of parameter
; is a pointer to a
; character variable

MoV BP,SP ; familiar :

MOV BX, (BP+4) ; get the address of the

g ; actual variable

MoV AX,S$S:(BX) ; fetch the value of the
; variable

INC AL ; increment the character...
; for example, "A" to "B"

MoV $S:(BX) ,AX ; restore variable

RETL 2

«END

A-22

Appendix

Example 9:
Passing Arrays By Value

program var1able_pass1ng,

type . ary = array E1..10] of lnteger,_

var . param: ary;:

iz 1nteger,‘ %

funct1on array_by value (only_parameter’ ary):'1nteger, externah
begin

for i-:= 1 to 10 do param[1] = i

ur1teln(array by value (param))
~end. : Ry
_one word of parameter... -

<FUNC ARRAY_BY__VALUE,1 i
e % ; a regular array is always
; passed by reference, ie.
> ; ; the address is the parameter
MOV BP,SP y © ;. familiar
Moy _ BX,(BP+4) ; load the address
MOV = - AX,SS:(BX+18) ;- fetch the Last word in the
: ; array...offset of 9 words
s Y TSR ; from the initial element
_ MOV (BP+6) ,AX ; return the element in the
! f SRS -; function return word
“+RETE. ¢ -2 S
-END K

A-23

Appendix C

Example 10:
Passing Arrays By Reference

A-24

Appendix C

Example 11:
Passing Packed Arrays By Value

A-25

Appendix C

Example 12:

Passing Packed Arrays By Reference

program var1abLe_pass1ng,
packed array E1..101 of 0..255;

type ary =
var param: ary;
i 1nteger,

function packed array by_| reference

(var only parameter

begin

for. i =1 to—10 do paramCil} := i;
ur1teln(packed array_by_ reference (param))

end. -

- FUNC PACKED_ARRAV_?V_REFERENCE,1

MOV - BP,SP

MOV BX,, (BP+4)
XOR AX,AX

MOV AL,SS:(BX+9)
MOV (BP+6),AX
RETI in 2t

ZEND -

A-26

e

Ne s e e Ne e owe

ary): integer, external;

one word of parameter...

a packed array of something
other than.character is
passed as a regular array
familiar

Load the address

zero AX

~fetch the last byte in the

array...offset of 9 bytes
from the initial element

return the element in the
function return word

Example 13:

Appendix

Passing Strings or Packed
Arrays of Character By Value

program var1abLe_pass1ng,

function string by value (only param

stfihé):-char; external;

vIdent1caL to Packed
Array of Char by Value-
two words of parameters
-are a segment pointer =
“to the string parameter

example, = 0, next word »
is a pointer, if not ¥ S
NIL, for example, <> O,

register
get addréss of base of

get next.word of parameter... -
this s the offset into.
the actual segment for

compute pe1nter to strung...
<pointer to segment> p{us

.we now have. the address, of
the string in BX...jump

fetch the first character...
1gnore the Llength byte

put the character into ‘the
function return word

begin. °
_writelnC string by vaLue - 'somethwng).) RF
end. 5
.FUNC STRING BY VALUE 2 o
Soeay ;
;
: ;
= S v
MoV BP,SP “; familiar
- MOV AX,(BP+4) - :;-TOS-..1f NIL, for
: ;
;
T2
= ; strange things...
< NIL is an 1mpLementat1on dependent value...here it is
assumed to be equal to 0...th1s may not necessar1Ly AL
be the case } E S
TEST B s N =
e s EASY 27
HARD = XER ;
- { not NIL...therefore, is a pointer to a Segment ‘-
Environment Record, the third word of which is a -
. pointer to-the -SIB, - hence. the 4 in the next ~
‘statement. The second word of the. SIB is the
pointer to the: actual segment that conta:ns the
... .String. ¥
- MoV BX,AX ; Load “address"
- MoV DI,SS:(8X *+ 4) ; get address of SIB
- MOV ~BX,SS3(DI + 2)° P
- A etoh ety ; actual segment
MoV AX, (BP+6) 7
. & ; 5
7
: Wi " the string
ADD BX, AX ;.
;
T .;.<offset>
T JMP FOUND £
;
3 ; to do the work
EASY : Tl
{ is NIL...therefore the second word on
the stack is the pointer to the str1ng)
MOV BX, (BP*6) 5
. FOUND - E :
{ we now have the address of the strung in BX } :
" XOR - AX,AX ;'zero AX ‘
- MoV AL,SS: (BX+1) ;
MoV (BP+8) ,AX :
;
s on the stack
RETL 4
-END

A-27

Appendix C

Example 14:
Passing Strings By Reference

A-29

Appendix C

Example 15:
Passing Packed Arrays
of Character by Reference

program variable passing;
type ary = packed array [1..101 of char;

var param: ary;
procedure packed array by reference (var only param: ary); external;
- begin ; - - o

param :="characters';
packed array by reference (param);

writeln(param) .
end. = - ;
.PROC - PACKED_ARRAY_BY REFERENCE,1 ; one word of parameter
; is the pointer to. =
; a string
HMOV. 5 UHPZSP: ; familiar
MoV BX, (BP+4)- ; load pointer into "address"
z ; register
XOR AX,AX ; zero AX-
MoV AL ,SS:(BX) ; move the first character
3 ; of the packed array into AX
-SuB AX,32. ; turn a lowercase character
g ; into an uppercase character -
; ..-it.is assumed that the
; input packed array is in
] ; lowercase :
MoV $S: (BX) ,AL ; restore the character
RETL 2 G
-END ! S

A-30

Appendix

Example 16:
Passing Records By Value

program var1able_pass1ng,
type ~ rec = record R
2 i_am 2nd, ,i_am 1st: integer;
i_am ¢ Lth i_am_: 3rd' char,_

bk end;
var param: rec; g Ny : PG 2
. function record- by \ value (only_param. ree¢): char; external;
begin r e
with param do
begin’
i’ am_2nd
i-am_1st :
i_am 4th
i_am 3rd := 'b';
~end; ; e
ur1teln(record | by_value (param))
end.

one word of parameter... a
record is passed exactly
the same whether it is a
value or a-reference
parameter...a pointer to the
structure ' is on the top
of the stack

fam1L1ar

access the pointer

access the first word

of the record..:the last
variable in the first
field declaratwon L list,
-in-this case an integer,
done. as an example

the following is an exampte of accessing another field
in the record, -in this case, the third word of ‘the record
contains a char (the last variable in the second .
declaration List). As a char is stored in the
-Low-order byte of the word, the offset should be even
address of the word.)

LFUNC RECORD_BY_VALUE,1

. MOV BP,SP
MOV - - BX,(BP+4)
MOV AX,SS:(BX) - -

Na Ne NN NG NeNa e N NG Ne NE NeNe N

-~

‘XOR - DX, DX ; zero DX
MOV BL §S: (BX+4) Sl sl accessathe character and
s - ; store it in the lou-order
. RN ; byte of DX
. MOV ;(BP+6),DX' ; -place the character in the
e <ast o n ; funetion return word
RETL 2 adiulvie s
. -END

A-31

Example 17:

Appendix

Passing Records By Reference

- program variable passing;
type _rec = record
i_am 2nd,i_am_1st: integer;
- i_am ¢ 4th, i _am 3rd. char;
end;
var param : rec;

procedure record by reference (var only_param: rec)- external-

begin
with param do
begin ;
“i_am 2nd
i_am_1st -
i_am 4th
i_am 3rd
end;"
writeln('before caltl');
with param do

begin
writeln("i_am 1st *,i am 1st)
writeln('i_am 2nd *,i_am 2nd);

writeln('i_am 3rd ',i_am 3rd);
writeln('i_am 4th ',i_am 4th)
end; : B
‘record by reference (param);
writeln('after call');
with param do
begin
writeln('i_am 1st ',i_am 1st)'
_writeln('i_am 2nd ',i_am 2nd);:
writetn('i_am 3rd ',i_am 3rd);

-writeln("i_am 4th ',i_am 4th)

one word of parameter
is a pointer to a structure

end
end. g SR
.PROC RECORD_BY_ REFERENCE,1 ;
MOV BP,_SP ; familiar
MoV BX, (BP+4) ;

{ this routine switches the values

access the parameter

of the variables’

in the record...the first and second are both integers

and the third and the fourth are

characters }

get second word of record

MoV AX,S$S: (BX) ; get first word of record

MoV DX,SS: (BX+2) H

MoV $S:(BX) ,DX ; restore

MoV $S:(BX+2) ,AX “; variables

XOR - AX,AX ; zero AX

XOR DX,DX ; zero DX i

- MOV, AL,SS: (BX+4) ; get low-order byte of

‘ § ; the third word

MoV - DL,SS: (BX+6) ; get low-order byte of
o : That ; the fourth word-

MOV - $S:(BX+4) ,DL ; restore

Appendix C

MoV .SS:(BX+6) AL _‘ _;-variables
CRETL el i 2 a R LR . s

-END

Example 18:
Multiple Parameter Passing

‘program strange;paraﬁs;
type rec = record
el R ~Ffieldl: array[1..10] of 1nteger,
. field2, field3: char,
- ¥ end;
var - parém1,param2 rec;
o L = Az integer;
—procedure muLt1_params
(vatue rec: rec; var reference rec: rec); external;
beg1n
with paraml do
begin : Z ROt RS
for i := 1 to 10 do field1Cil := i;:
field2 := 'a';
fieldd := 'b';
end; .
" multi_params (param1,param2)'
with param2 do
- begin i s d
for i := 1 to 10 do- urlteln('element',1, ', field1Cil);
~writeln('field2 ’,erle),
writeln('fields ' fieldd)
end;
cend.:it : : :
two words of parameters
TOS is a pointer to.a
record passed as a reference
parameter...T0S-1 is
a pointer to a record
passed as a value parameter

.PROC MULTI_PARAMS,2

Se e N Ne e N

MOV BP,SP ; ;
MOV - . -BX,(BP+6) access T0S-1 for the address
X of the value parameter

access TOS for the address

of the reference parameter
the first field of the record
is a ten element array of
integers, therefore the
offset of the Last element

is 9 words or 18 bytes...
there are 10 eLements in the
array

MOV DI, (BP+4)

ADD b1,18.

MOV CX,10.

Se NE NE e Ne he Ne e Ne N N

A-34

Appendix C

A-35

Appendi= C

Example 19:
Program to Determine NIL

NIL is a machine-dependent value. If you want
to determine what NIL is for your system, you
can use the following Pascal program. Note that
the value of NIL for each processor is listed in
Appendix N.

program find nil;
type trix = record e
ks ; case boolean of
true: (x: integer);
false: (y: Pt A% ! : integer);
© . end; =
var p: trix;
begin
p.y 2= nil;
writeln (p.x);
end. !

A-36

Appendix C

USEFUL ROUTINES

This section contains some example routines that
might be found generally useful.

function readport (port: integer): integer; external;
procedure writport (port, value: integer); external;
procedure readmemory %

] (segmnt, offset: integer; var result: integer); external;
function lookup (entry: integer): integer; external;

The first routine, below, reads a byte from an
I/0 port. The second routine writes a byte to
an I/O port. The third routine reads an
arbitrary byte from memory. The 1last two
routines work together to quickly look up an
item in a table.

A-37

Appendix C

read byte I/0 port

3 .FUNC READPORT 1 ;
PORT JEQU - b : ; port number to read from
RESULT .EQU 6 ; result of function
ENTRY MoV BP,SP ; point to parameters
MOV X, (BP+PORT) ; fetch port number
IN. AL ,DX ; read byte from port
XOR AH,AH ; put zero to extend to word
MOV . (BP+RESULT) ,AX ~ ; set returned result
RETL 2 ; cut stack by 2 bytes for parameter
«PROC WRITPORT,2 ; write byte I/0 port

VALUE .EQU 4
PORT -EQU 6

value to write

~e

MoV BP,SP
MoV DX, (BP+PORT)
MOV~ AL, (BP+VALUE) fetch value to write
cour DX, AL byte output value
-RETL - .4 cut back two parameters uords

- .RELPROC READHEHbRY,3,
VARPTR = .EQU 4
QFFSET . JEQU: :".%6

read word of memory
~ pointer ‘to variable
pointer to memory

e aLNe N

;
SEGMENT .EQU 8 ; segment of memory
- © MOV BP,SP ; point to parameters
LDS - -. BX, (BP+0FFSET) ; fetch extended’ povnter
MOV AX, (BX) ; memory word
MOV - DI, (BP*+VARPTR) ; pointer to varjable -
MOV . §S:(DI) AX ; store in variable in stack segment
RETL GRS - ; pop three parameters
-RELPROC PRIMES &
«-DEF * TABLE

TABLE = .WORD 15;253,5,7,11,13 17,23
2 ‘«RELFUNC LOOKUP 1-

8 +REF TABLE
LAST - . .EQU_ 8
ENTRY .EQU 4
RESULT .EQU - 6
: MOV BP,SP : AN
MOV - BX, (BP+ENTRY) ; fetch index
CMP - BX,LAST ; check range - ;
JA $01 3) ; do nothing if too high
MoV SI1,BX ; copy to index register
- MOV AX,TABLE(BX) (SI) ; tricky word index
- MOV. (BP+RESULT) ,AX ; store result
$01 RETL . 2
-END

A-38

OO0 U W~

APPENDIX D
6502 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name
number of parameters expected
extra symbols on source line
input line over 80 characters

unmatched conditional assembly directive

must be declared in .ASECT before used
identifier previously declared
improper format

illegal character in text

must .EQU before use if not to a label
macro identifier expected

code file too large

backwards .ORG not allowed

identifier expected

constant expected

invalid structure

extra special symbol

branch too far

IC-relative to externals not allowed
illegal macro parameter index

illegal macro parameter

operand not absolute

illegal use of special symbols
ill-formed expression

not enough operands

LC-relative to absolutes unrelocatable
constant overflow

illegal decimal constant

illegal octal constant

illegal binary constant

invalid key word

unmatched macro definition directive
include files may not be nested

A-39

Appendix D

36: unexpected end of input

37: .INCLUDE not allowed in macros

38: label expected

39: expected local label

40: local label stack overflow

41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count

44: no local labels in .ASECT

45: expected key word

46: string expected

47: 1/O0 - bad block, parity error (CRC)
48: I/0 - illegal unit number

49: 1/0 - illegal operation on unit

50: I/O - undefined hardware error

51: I/O - unit no longer on-line

52: I/0 - file no longer in directory

53: I/0 - illegal file name

54: I/0 - no room on disk

55: I/0 - no such unit on-line

56: I/O - no such file on volume

57: 1I/0 - duplicate file

58: I/O - attempted open of open file

59: I/0 - attempted access of closed file
60: I/O0 - bad format in real or integer
61: I/O - ring buffer overflow

62: 1/0 - write to write-protected disk
63: I1/0 - illegal block number

64: I/0 - illegal buffer address

65: nested macro definitions not allowed
66: '=' or ‘<" expected

67: may not equate to undefined labels
68: .ABSOLUTE must appear before lst proc
69: .PROC or .FUNC expected

70: too many procedures

71: only absolute expressions in .ASECT
72: must be label expression

73: no operands allowed in .ASECT

74: offset not word-aligned

A-40

16%
76
77
78:
79:
80:
81:
82:
83:
84 :

Appendix D

LC not word-aligned

index register required

'X'" or 'Y' expected

zero-page address required

illegal use of register

index register expected

ill-formed operand

'X' expected for indexed addressing
must use 'X' index register

must use 'Y' index register

A-41

OO0 U WM

APPENDIX E
6800 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name

number of parameters expected

extra symbols on source line

input line over 80 characters
unmatched conditional assembly directive
must be declared in .ASECT before uscd
identifier previously declared
improper format

illegal character in text

must .EQU before use if not to a label
macro identifier expected

code file too large

backwards .ORG not allowed

identifier expected

constant expected

invalid structure

extra special symbol

branch too far

IC-relative to externals not allowed
illegal macro parameter index

illegal macro parameter

operand not absolute

illegal use of special symbols
ill-formed expression

not enough operands

IC-relative to absolutes unrelocatable
constant overflow

illegal decimal constant

illegal octal constant

illegal binary constant

invalid key word

unmatched macro definition directive
include files may not be nested

A-42

Appendix E

36: unexpected end of input

37: .INCLUDE not allowed in macros

38: label expected

39: expected local label

40: local label stack overflow

41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count

44: no local labels in .ASECT

45: expected key word

46: string expected

47: I/0 - bad block, parity error (CRC)
48: I/0 - illegal unit number

49: I/0 - illegal operation on unit

50: I/O - undefined hardware error

51: I/O - unit no longer on-line

52: I/0 - file no longer in directory

53: I/O0 - illegal file name

54: I1/0 - no room on disk

55: I/0 - no such unit on-line

56: I/0 - no such file on volune

57: I/O - duplicate file

58: I/0 - attempted open of open file

59: I/0 - attempted access of closed file
60: I/O - bad format in real or integer
61: I/0O - ring buffer overflow

62: 1/0 - write to write-protected disk
63: I/0 - illegal block number

64: I/0 - illegal buffer address

65: nested macro definitions not allowed
66: '=' or "<{>' expected

67: may not equate to undefined labels
68: JABSOLUTE must appear before lst proc
69: .PROC or .FUNC expected

70: too many procedures

71: only absolute expressions in .ASECT
72: must be label expression

73: no operands allowed in .ASECT

74: offset not word-aligned

A-43

Appendix E

75: 1C not word-aligned

76: 'X' expected for indexed addressing
77: 'A' or 'B' expected

78: invalid operand

79: comma expected

A-44

QoM kW

APPENDIX F
6809 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name

number of parameters expected

extra symbols on source line

input line over 80 characters
unmatched conditional assembly directive
must be declared in .ASECT before used
identifier previously declared
improper format

illegal character in text

must .EQU before use if not to a label
macro identifier expected

code file too large

backwards .ORG not allowed

identifier expected

constant expected

invalid structure

extra special symbol

branch too far

IC-relative to externals not allowed
illegal macro parameter index

illegal macro parameter

operand not absolute

illegal use of special symbols
ill-formed expression

not enough operands

IC-relative to absolutes unrelocatable
constant overflow

illegal decimal constant

illegal octal constant

illegal binary constant

invalid key word

unmatched macro definition directive
include files may not be nested

A-45

Appendix F

36: unexpected end of input

37: J.INCLUDE not allowed in macros

38: label expected

39: expected local label

40: local label stack overflow

41: string constants must be on single line
42: string constant exceeds &0 characters
43: cannot handle this relocate count

44: no local labels in .ASECT

45: expected key word

46: string expected

47: 1/0 - bad block, parity error (CRC)
48: I/0 - illegal unit number

49: 1/0 - illegal operation on unit

50: I/0 - undefined hardware error

51: I/O0 - unit no longer on-line

52: I/O - file no longer in directory

53: I/O - illegal file name

54: I/0 - no room on disk

55: I/0 - no such unit on-line

56: I/0 - no such file on volume

57: I/O - duplicate file

58: I/0 - attempted open of open file

59: I/O - attempted access of closed file
60: I/O - bad format in real or integer
61: I/O - ring buffer overflow

62: I/0 - write to write-protected disk
63: I/O - illegal block number

64: I/0 - illegal buffer address

65: nested macro definitions not allowed
66: *=' or '<> " expected

67: may not equate to undefined labels
68: .ABSOLUTE must appear before 1lst proc
69: .PROC or .FUNC expected

70: too many procedures

71: only absolute expressions in .ASECT
72: must be label expression

73: no operands allowed in .ASECT

74: offset not word-aligned

A-46

75:
76
77
78:
79:
80:
81:
82:
83:
84:
&5:

I not word-aligned
immediate operand expected
invalid register list entry
operand must be indexed
invalid index register

no offset allowed

indirect not allowed
invalid offset register
invalid offset

immediate not allowed
registers are incompatible

A-47

Appendix F

O N®MO W+

APPENDIX G
8080 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name

number of parameters expected

extra symbols on source line

input line over 80 characters
unmatched conditional assemhly directive
must be declared in .ASFCT before used
identifier previously declared
improper format

illegal character in text

must .EQU before use if not to a label
macro identifier expected

code file too large

backwards .ORG not allowed

identifier expected

constant expected

invalid structure

extra special symbol

branch too far

I1C-relative to externals not allowed
illegal macro parameter index

illegal macro parameter

operand not absolute

illegal use of special symbols
ill-formed expression

not enough operands

LC-relative to absolutes unrelocatable
constant overflow

illegal decimal constant

illegal octal constant

illegal binary constant

invalid key word

unmatched macro definition directive
include files may not be nested

A-48

36:
37:
38:
39:
40:
41:
42:
43:

45:
46:
47 :
48:
49:
50:
51:
52:
53:
54:
55
56:
57
58:
59:
60:
61:
62:
63:
64 :
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:

Appendix G

unexpected end of input

.INCLUDE not allowed in macros

label expected

expected local label

local label stack overflow

string constants must be on single line
string constant exceeds 80 characters
cannot handle this relocate count

no local labels in .ASECT

expected key word

string expected

I1/0 - bad block, parity error (CRC)
I/0 - illegal unit number

I/0 - illegal operation on unit

I/0 -~ undefined hardware error

I/0 -~ unit no longer on-line

I/0 - file no longer in directory

I/0 - illegal file name

I/0 - no room on disk

I/0 - no such unit on-line

I/0 - no such file on volume

I/0 - duplicate file

I1/0 - attempted open of open file

I1/0 - attempted access of closed file
I/0 - bad format in real or integer
I1/0 - ring buffer overflow

I/0 - write to write-protected disk
I/0 - illegal block number

I/0 - illegal buffer address

nested macro definitions not allowed
="' or " {>" expected

may not equate to undefined labels
LABSOLUTE must appear before 1lst proc
.PROC or .FUNC expected

too many procedures

only absolute expressions in .ASECT
must be label expression

no operands allowed in .ASECT

offset not word-aligned

A-49

Appendix G

75: LC not word-aligned
76: invalid operand
77: comma expected

A-50

34:

APPENDIX H
9900 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name

number of parameters expected

extra symbols on source line

input line over 80 characters
unmatched conditional assembly directive
must be declared in .ASECT before used
identifier previously declared
improper format

illegal character in text

must .EQU before use if not to a label
macro identifier expected

code file too large

backwards .ORG not allowed

identifier expected

constant expected

invalid structure

extra special symbol

branch too far

ILC-relative to externals not allowed
illegal macro parameter index

illegal macro parameter

operand not absolute

illegal use of special symbols
ill-formed expression

not enough operands

IC-relative to absolutes unrelocatable
constant overflow

illegal decimal constant

illegal octal constant

illegal binary constant

invalid key word

unmatched macro definition directive
include files may not be nested

A-51

Appendix H

36: unexpected end of input

37: .INCLUDE not allowed in macros

38: label expected

39: expected local label

40: 1local label stack overflow

41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count

44: no local labels in .ASECT

45: expected key word

46: string expected

47: 1/0 - bad block, parity error (CRC)
48: I/0 - illegal unit number

49: 1/0 - illegal operation on unit

50: I/0 - undefined hardware error

51: I/O - unit no longer on-line

52: I/O0 - file no longer in directory

53: I/0 - illegal file name

54: I/0 - no room on disk

55: I/0 - no such unit on-line

56: I/0 - no such file on volume

57: T1/O - duplicate file

58: I/0 - attempted open of open file

59: I/0 - attempted access of closed file
60: I/0 — bad format in real or integer
61: I/O - ring buffer overflow

62: 1/0 - write to write-protected disk
63: I/0 - illegal block number

64: I1/0 - illegal buffer address

65: nested macro definitions not allowed
66: '=' or <> * expected

67: may not equate to undefined labels
68: .ABSOLUTE must appear before 1st proc
69: .PROC or .FUNC expected

70: too many procedures

71: only absolute expressions in .ASECT
72: must be label expression

73: no operands allowed in .ASECT

74: offset not word-aligned

A-52

75:
76:
77:
78:
79:
80:
81:
82:
83:
84:

IC not word-aligned

illegal immediate operand

index must be WR

close paren ')' expected
indirect & autoincr must be WR
autoincr must be WR indirect

comma ',' expected
no operand allowed

illegal map file
WR expected

A-53

Appendix H

OO0 b wWwN

APPENDIX I
LSI-11/PDP-11 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name

number of parameters expected

extra symbols on source line

input line over 80 characters
unmatched conditional assembly directive
must be declared in .ASECT before used
identifier previously declared
improper format

illegal character in text

must .EQU before use if not to a label
macro identifier expected

code file too large

backwards .ORG not allowed

identifier expected

constant expected

invalid structure

extra special symbol

branch too far

ILC-relative to externals not allowed
illegal macro parameter index

illegal macro parameter

operand not absolute

illegal use of special symbols
ill-formed expression

not enough operands

IC-relative to absolutes unrelocatable
constant overflow

illegal decimal constant

illegal octal constant

illegal binary constant

invalid key word

unmatched macro definition directive
include files may not be nested

A-54

Appendix I

36: unexpected end of input

37: .INCLUDE not allowed in macros

38: 1label expected

39: expected local label

40: local label stack overflow

41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count

44: no local labels in .ASECT

45: expected key word

46: string expected

47: I/0 - bad block, parity error (CRC)
48: I/0 - illegal unit number

49: I/0 - illegal operation on unit

50: I/O - undefined hardware error

51: I/O - unit no longer on-line

52: I/0 - file no longer in directory

53: I/O - illegal file name

54: I1/0 - no room on disk

55: I/O - no such unit on-line

56: I/0 - no such file on volume

57: I/O - duplicate file

58: I/0 - attempted open of open file

59: I/0 - attempted access of closed file
60: I/0 - bad format in real or integer
61: I/O - ring buffer overflow

62: I/0 - write to write-protected disk
63: I/0 - illegal block number

64: 1/0 - illegal buffer address

65: nested macro definitions not allowed
66: *=' or ' < * expected

67: may not equate to undefined labels
68: (ABSOLUTE must appear before 1st proc
69: .PROC or .FUNC expected

70: too many procedures

71: only absolute expressions in ,ASECT
72: must be label expression

73: no operands allowed in .ASECT

74: offset not word-aligned

A-55

Appendix I

75:
76
4 &
78:
79:
80:
81:
82:
83:

1C not word-aligned

close paren ')' expected
register expected

too many special symbols
unrecognizable operand
register reference only

first operand must be register
coma ',' expected
unimplemented instruction
must branch backwards to label

A-56

OO0 O bW+

APPENDIX J
Z8 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name

number of parameters expected

extra symbols on source line

input line over 80 characters
unmatched conditional assembly directive
must be declared in .ASECT before used
identifier previously declared
improper format

invalid radix

must .EQU before use if not to a label
macro identifier expected

code file too large

backwards .ORG not allowed

identifier expected

constant expected

invalid structure

extra special symbol

branch too far

IC-relative to externals not allowed
illegal macro parameter index

illegal macro parameter

operand not absolute

illegal use of special symbols
ill-formed expression

not enough operands

ILC-relative to absolutes unrelocatable
constant overflow

illegal decimal constant

illegal octal constant

illegal binary constant

invalid key word

unmatched macro definition directive
include files may not be nested

A-57

Appendix J

36: unexpected end of input

37: JINCLUDE not allowed in macros

38: 1label expected

39: expected local label

40: local label stack overflow

41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count

44: no local labels in .ASECT

45: expected key word

46: string expected

47: 1/0 - bad block, parity error (CRC)
48: I/0 - illegal unit number

49: I/0 - illegal operation on unit

50: I/0O - undefined hardware error

51: I/O - unit no longer on-line

52: 1/0 - file no longer in directory

53: I/O - illegal file name

54: I/O - no room on disk

55: I/O - no such unit on-line

56: I/O - no such file on volume

57: I/O - duplicate file

58: I/0 - attempted open of open file

59: I/0 - attempted access of closed file
60: I/O - bad format in real or integer
61: I/O - ring buffer overflow

62: I/0 - write to write-protected disk
63: I/O - illegal block number

64: I/0 - illegal buffer address

65: nested macro definitions not allowed
66: "'=' or ' <> expected

67: may not equate to undefined labels
68: JABSOLUTE must appear before 1st proc
69: .PROC or .FUNC expected

70: too many procedures

71: only absolute expressions in .ASECT
72: only labels equated to .DEFs

73: no operands allowed in .ASECT

74: offset not word-aligned

A-58

75:
76:
7
78:
79:
80:
81:
82:
83:
84:

LC not word-aligned

too many symbols

operand expected

bad data value

")" expected

bad operand type

odd register

unknown instruction
working register expected
indirect or register expected
condition code expected

A-59

Appendix J

QOO WwN

APPENDIX K
Z80 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name

number of parameters expected

extra symbols on source line

input line over 80 characters
unmatched conditional assembly directive
must be declared in .ASECT before used
identifier previously declared
improper format

illegal character in text

must .EQU before use if not to a label
macro identifier expected

code file too large

backwards .ORG not allowed

identifier expected

constant expected

invalid structure

extra special symbol

branch too far

ILC-relative to externals not allowed
illegal macro parameter index

illegal macro parameter

operand not absolute

illegal use of special symbols
bill-formed expression

not enough operands

IC-relative to absolutes unrelocatable
constant overflow

illegal decimal constant

illegal octal constant

illegal binary constant

invalid key word

unmatched macro definition directive
include files may not be nested

A-60

Appendix K

36: unexpected end of input

37: .INCLUDE not allowed in macros

38: label expected

39: expected local label

40: local label stack overflow

41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count

44: no local labels in .ASECT

45: expected key word

46: string expected

47: 1/0 - bad block, parity error (CRC)
48: I/O - illegal unit number

49: 1/0 - illegal operation on unit

50: I/0 - undefined hardware error

51: I/O - unit no longer on-line

52: I/0 - file no longer in directory

53: I/O - illegal file name

54: I1/0 - no room on disk

55: I/O - no such unit on-line

56: I/0 - no such file on volume

57: I1/0 - duplicate file

58: 1/0 - attempted open of open file

59: I/0 - attempted access of closed file
60: I/0 - bad format in real or integer
61: I/0 - ring buffer overflow

62: I/0 - write to write-protected disk
63: 1/0 - illegal block number

64: I/0 - illegal buffer address

65: nested macro definitions not allowed
66: " =' or '<> " expected

67: may not equate to undefined labels
68: .ABSOLUTE must appear before 1lst proc
69: .PROC or .FUNC expected

70: too many procedures

71: only absolute expressions in .ASECT
72: must be label expression

73: no operands allowed in .ASECT

74: offset not word-aligned

A-61

Appendix K

75
76:
7
78:
79:
&0:
81:
82:
83:
8&4:
85:
86:

LC not word-aligned
incorrect operand format
close paren ')' expected
coma ',' expected

plus '+' expected

open paren '(' expected
stack pointer 'SP' expected
'HL' expected

illegal 'cc' condition code
register 'C' expected
register expected 'r'
register 'A' expected

A-62

OO WN =

0

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22
23:
24
25:
26:
27:
28:

29:
30:
31:
32:

APPENDIX L
8086 /88/87 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name

number of parameters expected

extra symbols on source line

input line over 80 characters

unmatched conditional assembly
directive

must be declared in .ASECT before
used

identifier previously declared

improper format

illegal character in text

must .EQU before use if not to a label

macro identifier expected

code file too large

backwards .ORG not allowed

identifier expected

constant expected

invalid structure

extra special symbol

branch too far

[C-relative to externals not allowed

illegal macro parameter index

illegal macro parameter

operand not absolute

illegal use of special symbols

ill-formed expression

not enough operands

IC-realtive to absolutes
unrelocatable

constant overflow

illegal decimal constant

illegal octal constant

illegal binary constant

A-63

Appendix L

33:

35:
36:
37:
38:
39:

41:

42:

43:
44 :
45
46
47

48:
49:

50:

51;

b2

53:
54:
55:
56:
57:
58:

59:
60:
61:
62 :

invalid key word

unmatched macro definition
directive

include files may not be nested

unexpected end of input

. INCLUDE not allowed in macros

label expected

expected local label

local label stack overflow

string constants must be on
single line

string constants exceeds &0
characters

cannot handle this relocate count

no local labels in .ASECT

expected key word

string expected

I1/0 — bad block, parity
error (CRC)

I/0 — illegal unit number

I/0 — illegal operation
on unit

I/0 — undefined hardware
error

I1/0 — unit no longer
on-line

I1/0 — file no longer in
directory

I/0 — illegal file name

I/0 — no room on disk

I/0 — no such unit on-line

I/0 — no such file on volume

1/0 — duplicate file

I/0 — attempted open of open
file

I/0 — attempted access of closed file

I/0 — bad format in real or integer

1/0 — ring buffer overflow

I1/0 — write to write-protected disk

A-64

635
64:
65 :
66:
67:
68:
69:
70:
71:
72
73"
74:
75:
76:

77 :
78:
79:
80:
81:
82:
83:
84:

85:
86:
k7:
89:
91:
92:
93:
94 :

95

Appendix L

I/0 — illegal block number

I/0 — illegal buffer address

nested macro definitions not allowed

'=' or '<>' expected

may not equate to undefined labels

.ABSOLUTE must appear before first proc

.PROC or .FUNC expected

to many procedures (more than 10)

only absolute expressions in .ASECT

must be label expression

no operands allowed in .ASECT

offset not word-aligned

IC not word-aligned

had label, open parenthesis then
illegality

expected absolute expression

both operands cannot be a seg register

illegal pair of index registers

have to use BX, BP, SI or DI

illegal constant as first operand

the first operand is needed

the second operand is needed

expected comma before second
operand

registers stand-alone except in
indirect

only two registers per operand

expected label or absolute

close parenthesis expected

cannot POP CS

cannot have xchg r8 with rl6

segment registers not allowed

ESC external operand on left must
be constant<64

only one of operands can have
segment override

right operand mist be a memory
location

A-65

Appendix L

96: left operand must be a 16 bit
register

97: left operand must be memory or
register alone

98: operand cannot be a segment or
immediate

99: count must be 1 or in CL

100: a byte constant operand is

required

101: operand must use () or be a
label

102: LOCK followed by something
illegal

103: REP precedes only string
operations

104: not implemented

105: expected a label

106:

107: open parenthesis expected

108: expected register alone as right
operand

109: segovpre then regalone, that's
illegal

110: only one operand allowed

111: operands are AL,op2 for byte
MUL, etc.

112: SP can only be used with the SS
segment

113: MOVBIM only for immediate to
memory

114: BIMs must be immediate bytes to
memory

115: MOV immediate to Segment Register
not allowed

116: Segment Register expected

117: (8087) invalid two-operand format

118: (8087) invalid single operand
format

119: (8087) inproper operand field

A-66

120:
121:

122:

123:

124:

125:
126:

Appendix L

(8087) instruction has no operands

no override of ES on string
destination

intersegment jump or call needs 2
constant or external operands

I1/0 port must be immediate byte
or DX

1/0 source-destination register
must be AL or AX

prefix mist be on same line as code

register expected as first token
after '('

A-67

OO0 dWwN

APPENDIX M
68000 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name

number of parameters expected

extra symbols on source line

input line over 80 characters
unmatched conditional assembly directive
must be declared in .ASECT before used
identifier previously declared
improper format

illegal character in text

must .EQU before use if not to a label
macro identifier expected

code file too large

backwards .ORG not allowed

identifier expected

constant expected

invalid structure

extra special symbol

branch too far

1C-relative to externals not allowed
illegal macro parameter index

illegal macro parameter

operand not absolute

illegal use of special symbols
ill-formed expression

not enough operands

IC-relative to absolutes unrelocatable
constant overflow

illegal decimal constant

illegal octal constant

illegal binary constant

invalid key word

unmatched macro definition directive
include files may not bhe nested

A-68

Appendix M

36: unexpected end of input

37: JINCLUDE not allowed in macros

38: label expected

39: expected local label

40: local label stack overflow

41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count

44: no local labels in .ASECT

45: expected key word

46: string expected

47: I/0 - bad block, parity error (CRC)
48: I/0 - illegal unit number

49: I/0 - illegal operation on unit

50: I/O - undefined hardware error

51: I/O - unit no longer on-line

52: I/0 -~ file no longer in directory

53: I/O - illegal file name

54: 1/0 - no room on disk

55: I/O - no such unit on-line

56: I/0 - no such file on volume

57: I/O - duplicate file

58: I/0 - attempted open of open file

59: I/0 - attempted access of closed file
60: I/0 - bad format in real or integer
61: I/O - ring buffer overflow

62: I/0 - write to write-protected disk
63: I/0 - illegal block number

64: 1I/0 - illegal buffer address

65: nested macro definitions not allowed
66: ' =' or *<>* expected

67: may not equate to undefined labels
68: .ABSOLUTE must appear before 1lst proc
69: .PROC or .FUNC expected

70: too many procedures

71: only absolute expressions in .ASECT
72: must be label expression

73: no operands allowed in .ASECT

74: offset not word-aligned

A-69

Appendix M

75
76:
77:
78:
79:
80:
81:
82:
83:

85:
87:

88:
89:

LC not word-aligned
unrecognizable address mode
address register expected
close paren ')' expected
displacement out of range
index register expected
illegal length qualifier
illegal source address mode
illegal destination address mode
comma ',' expected

length qualifier required
length qualifier not allowed
data register expected

label expected

illegal register list
immediate operand expected

A-70

APPENDIX N
NIL POINTER VALUES

The following table lists the value designated
as NIL for each processor. A NIL pointer (a
pointer variable which is assigned the value
NIL) is uninitialized or points to nothing.

Z80 0001
8080 0001
6502 0000
6809 0000
68000 0000
HP-87 0000
PDP-11 FOO1
9900 0000
8086 0000

A-71

INDEX

-6 —

BO00 . v v v o o e e e e e e s e et e e e et e e 2-7

B8B00u 66 5 » 06 5 668 v 518 w s G m W R EeE s 2-9

BB000: a5 s o6 s s a5 6 55 5 & a0 I 2-29

6809. b b s W e W “ Ve w @ wa 2-14
-8 -

BO8B0: = 566 s s 5 s 6 & ¢ 66 § & 61’6 & 66 &5 % 2-11
8086. P N e R LR 2-18
-9 -

99004 <« 656 5 s 05 s 0.5 5 0.5 % & &5 VB w % 2-12
—A -

ABSOIUTE : s s 5 66 6 o 5.5 & & @ v 1-56, 1-85
Absolute SeCTionNS. o« ¢ o « ¢« ¢ ¢ ¢ o o o o o « o » 1-22
ATC,: o6 o o s & R T R 1-23
LALIGN. " mewE M s e e e e e e 1-39
CAND . ¢t e e e e e e e e e s e s s e .« . 1-14
Arithmetic Operators. o G om W oem 1-13
sASCTITs « a5 » & T I Yy 1-33
ASCITILIST: s w6 o 6 5 v a5 w 5 4 YRR 1-40
ASECT. o 0 0 v % B W E e e & 1-23, 1-57
Assembled listing. « « ¢ ¢ v ¢ v v 0 0. 1-92, 1-98
Assembler DirectiveS. ¢ « o o o o 2 o o o o ¢ o 1-25

conditional assembly......... 1-52, 1-59

I-1

Index

external reference. « « « ¢ v ¢ o 4 4 0. .. 1-73
host communication. 1-71
listing control. « « o v v v v o ¢ o s 0 o o« 1-39
macro definitions. 1-53, 1-62
miscellaneousS. « ¢ « v ¢ ¢ ¢ s ¢ 0 s 0 o o e« oo 1-55
procedure-delimiting. « « « ¢ « ¢ ¢ o s o 4 1-28
program delimiters. 1-74
program 1inkage. . « « « o o ¢ ¢« o o o 2 o o 1-47
Assemblers
B6H00. « s « » R R L E R IR TN 27
6800, « v o v . TR R T R Y 2-9
68000. Gt s s e e s e e s e s e e s e s 2-29
BBOD s 0 o s s o s v 68 8 8 60 5 610 & a0 0 2-14
8080, I 2-11
8086. VRGeS R EE W BE W WE e 2-18
9900 s v v s58 ¢« #5 4 om% & 26 ¢ vo 5 6o @ 2-12
LSI-11..... R T L e 2-4
PDP-11. & i i it et ettt s e o s ao s 2-4
Z8¢ o 00 5 » va s s w misim s Wi @ N s 4 2-16
Z8O: w0 s wm s m w s R R A 2-5
Assembly language. « « v « o ¢ s s ¢ o 0 s 0 o 0 o o 1-3
Assembly RoutineS. « « « v o ¢ ¢« ¢ o 0 o 0 o o & . 1-21
Assembly Time ConstantS. « « « o ¢« ¢ o ¢ 0 o o » 1-11
-B -
Binary Integer Constants.+ .. 1-8
BILOCK. « ¢ & . & R TR g &g o 1-23, 1-35
BYTE. & vt o s e e it e et e e e 1-23, 1-34
Byte Organization. « « o o ¢« ¢« o ¢« ¢ s o s o o o o« 1-5

Index

-C -
Character Constants. R R E R TR 1-10
Character Sets ¢ v i v s s s s 04 s o 5 a4 % & & 1-6
Character SErings. . . .« v o e v ¢t o o o o o o o« 1-8
Comment Field. ¢ v v e v o o o o 0 v o o s oo .« . 1-20
COMPTOSSie v o sis o sion o %0 0 5 5 % e s s s 1-85
Conditional ASSembly . « « ¢ ¢ ¢ o ¢ ¢ o o » e s . 1-59
Conditional Assembly Directives. « 1-52
.CONDLIST. ¢ v v v s v e v v e s W ow .. 1-41
CONST. C w mie w wem s E e E s 1-47, 1-72

-D -
Data and Constant Definitions. .. . 1-33
Decimal Integer ConstantsS. e o s 1-9
sDEF & e o w4 « GAw e w e E W & 1-51, 1-73
Default Integer Constants. $ e 8 e e w 1-10

~-F -
JEISE: 4 6 v 6 66 % .8 v 56 s 6w m @ @ 1-53, 1-59
vENDs ¢ as v 58 « o 4 N 1-23, 1-32
CENDC . ¢ vt 6t e et et e s e e eee e 1-52, 1-59
JENDM. @ s e e e e e s e s s s e e «. 1-54, 1-62
CJEQU. v st i i e e e e e e e e e 1-23, 1-37
Error MessageS. ss w s 1-94, 1-99
8086 .ERRORS. O R 1-90
Example 8086 Routines. e e e e .. A-37
EXpPreSSioNSe o o o ¢ o ot o e o o v o s oaeoese 1-11

External Reference Directives. 1-73

Index

-F -

BUBZwFOPS G 3% s @ s e w0 8 si ss s wim & s & s 1-90
FONEs ¢ o s « o 6 5 » . 1-21, 1-28, 1-30, 1-70
—-H-

Hexadecimal Integer Constants. e s .. 1-9
Host Communication Directives. 1-72
=T =
Identifiers R 1-6
sIPe oo w4 i B R e G s b . 1-52, 1-59
INCLUDE. . . ¢ ¢ v v ¢ 0 v o . e e e 1-55
INTERP. v v ¢ ¢ v ¢ v v . Wi W Wi . B ow mE 1-50
L -

Label. v oeeeeenn S % M s RE W 1-11-1-17
lLabel Field. T 1-17
LIiNKINE: c v o s 6 a6 6 666 & st & 0% & & 1-68
Linking and Progrwn Moduleso . 1-75
Linking ReStrictionS. « « ¢ « ¢ v ¢ « o a ¢ o « & 1-12
ILinking to Pascal.« o« o e e e aee 1-83
0 0 1 1-23, 1-44
Listinge ¢« o ¢ ¢ ¢ ¢« o o o o o o s @ mimw s 1-92, 1-98
Listing Control DirectiveS. .« . « ¢ « ¢« « o « & 1-39
location Counter Modification. 1-38
Logical Operators. « « « o ¢ v o ¢ v e 0 o o = 0@ 1-14
G w4 % @ @ W i@ @ i w owoe . 1-14
iy woh s b B d B B B b E m F s R bk eE @ 1-14
ey v wowm s oo e e e e e e e e e e 1-14
Fo wmn w e m W e e et s s e e e e 1-14
—% e W G W S S e wE s BB S 1-14

14

Index

[a o 66 @« oo owss R TR . 1-14

7 S T P e g e w 1-14
....................... . 1-14
A T 6w 1-14

Yo e me @ s e . o . v % e w & 1-14
P R E R T T 1-14
e w se m m s a wa s we w C e e e e e e 1-14
L3L=11: o o o 50 o oo e € v W e ow s e E . 2-4

M-
MACRO . & vt e e e e e e 6 e e oo .. 1-53, 1-82
Macro CallS. « s ¢ ¢ o o o 50 ¢ s o BB W 1-63
Macro Definition Directives. 1-53
Macro DefinitionS. . .« « . ¢ o v v v o e o o o o 1-62
Macro Language. « « « « o o o o o o o s o o o o o 1-61
CMACROLIST . @ v v v v e e v o 6 o a oo aossoese 1-45
Miscellaneous Directives. “ S w v W 1-55
sMOD G w0 s 55 o 68 & w5 W B B e EE e & s 1-14
~N -

NARROWPAGE . . ¢ ¢t ¢ ¢ ¢ v ¢ o ¢ e s o a0 oo 1-43
NOASCIILIST . v v ¢ o ¢ o o o o o T T E LR 1-41
.NOCONDLIST. T R PR 1-42
JNOLIST % o s 6 s a8 5 o a5 a8 08 a6 s« 1-23, 1-45
.NOMACROLIST. o v m iy mwe 8 s 1-46
LNOPATCHLIST . ¢ ¢ ¢ ¢ ¢ ¢ o o & e ® e we W w e 1-47
<NOSYMTABLE. ¢ ¢ ¢ ¢ ¢ e o ¢ 0 v o oW B & e 1-42
eNOT: o6 o ¢ 65 o @ T ee. 1-14

I-5

Index

-0-
Object Code Formats « s s o s s w5 « asa 6 & & 5 s 1-5
Octal Integer ConstantS. . « « o« « ¢ ¢ ¢ o o « & 1-10
Opcode TFields s s o5 sww 5o 698 a46@5e% s 1-20
8086.0PCODES . & o ¢ ¢ ¢ ¢ ¢ s ¢ s o0 s o coaoaos 1-90
Operand Field: « ¢ v o s 60 s 99 6 ¢ 608 « o6 & 4 1-20
dORs s o w @ 5@ @p o T TR Y 1-14
ORGa w & o » % ST SR 1-23, 1-38, 1-85

-P-
GPAGE S s 95 56 5 ¢ #68 v wp ned ko S owsd 1-44
+PAGEHEIGHT. ¢ ¢ ¢ 4 ¢ ¢ ¢ ¢ o o a s e e s oo 1-43
Parameter Passing. « « ¢ ¢ ¢ ¢ « et o 4 0 0 0 oo 1-63
Parameter passing. om o e e o« oo« A-37
Parameter Passing Conventions. 1-78
PATCHEIST ¢ o o 66 @ s w6 v a5 5 o4 4 % 1-456, 1-100
PDP-11l. c oo o s e saisaae $F moe e e E @S 2-4
SPRIVATE. ¢ ¢ ¢ ¢ ¢ ¢ o 0 00 e o oo euooa 1-49, 1-73
ePROC: o 06 w05 o 8 o « o 1-21, 1-28, 1-29, 1-70
Procedure-Delimiting Directives. . « « « « « & 1-28
Program Identifier Directives. 1-74
Program lLinkage DirectiveS. « « « ¢ ¢ ¢ « « o 1-47
Program Linking Directives. 1-71
Program lLinking & Relocation. e s s s . 1-68
ePSECT . ¢ ¢ v 0 s 08 0 o s oo seosesassseses 1-57
oPUBLIC e « o @ o w o & 8 0 95 a0 5 o 10 s 1-48, 1-72

-R -
+RADIX., « o o & & & 8 1] = s hs w me s e s 1-58
REF. o oo oo . e e e e e .. 1-51, 1-73
sBREIFUNC: v o o o008 2 0 0 1-21, 1-28, 1-32, 1-70
REILPROC. " .1-21, 1-28, 1-31, 1-70

I1-6

Index

-8 -

Sample 8086 RoutineS. « « ¢« ¢« ¢ o s o o o o o » . A-37

Stand-Alone ApplicationsS.o ... 1-84

Symbol TablEw o s s 6 ¢ 50 s 600 s 2« ¢ wm e o 1=102
-T -

o« TLTLiEs o st w0 o 5 & 50 0 & st & 0% 5 % 5 5 . 1-40
—V-

Value ParafeterSe v v o oo s s o9 505 5 o » 1-80
Variable ParametersS. « « « c o o o s o s 0 o s & » 1-79
-W-

WOBDw 1o o s o miio 8 6.8 6 w0 % 5 % s 1-23, 1-36
Word Organization. S wa e W 1-5
=X =
o XORs s s s mos s g s sg s wiwo e ws . e e 1-14
-7
Z8o o vin o vt8 0 si0iin 8 ww wwis s s s e nm s e 2=16
Z8O u oo n wwin o s o simim o s & 50 % w0 @ a0 2-5

	Cover
	Preface
	Table of Contents
	Chapter 1: The Assembler
	Introduction
	General Information
	Assembler Directives
	Conditional Assembly
	Macro Language
	Program Linking & Relocation
	Operation of the Assembler
	Assembler Output

	Chapter 2: Processor-Specific Information
	Introduction
	LSI-11/PDP-11 Assembler
	Z80 Assembler
	6502 Assembler
	6800 Assembler
	8080 Assembler
	9900 Assembler
	6809 Assembler
	Z8 Assembler
	8086/8088/8087 Assembler
	68000 Assembler

	Appendices
	A: The Linker
	B: The Compress Utility
	C: Coding Examples
	D: 6502 Syntax Errors
	E: 6800 Syntax Errors
	F: 6809 Syntax Errors
	G: 8080 Syntax Errors
	H: 9900 Syntax Errors
	I: LSI-11/PDP-11 Syntax Errors
	J: Z8 Syntax Errors
	K: Z80 Syntax Errors
	L: 8086/8088/8087 Syntax Errors
	M: 68000 Syntax Errors
	N: NIL Pointer Values

	Index

